Single-Valued Neutrosophic Ideal Approximation Spaces

Main Article Content

Yaser Saber, Mohamed Abusalih, Esam Bader, Tawfik Elmasry, Abdelaziz Babiker, Florentin Smarandache

Abstract

In this paper, we defined the basic idea of the single-valued neutrosophic upper (αn)δ, single-valued neutrosophic lower (αn)δ and single-valued neutrosophic boundary sets (αn)B of a rough single-valued neutrosophic set αn in a single-valued neutrosophic approximation space (F˜, δ). Based on αn and δ, we introduced the single-valued neutrosophic ideal approximation interior operator intδαn and the single-valued neutrosophic ideal approximation closure operator Clδαn. We joined the single-valued neutrosophic ideal notion with the single-valued neutrosophic approximation spaces and then introduced the single-valued neutrosophic ideal approximation closure and interior operators associated with a rough single-valued neutrosophic set αn. single-valued neutrosophic ideal approximation connectedness and the single-valued neutrosophic ideal approximation continuity between single-valued neutrosophic ideal approximation spaces are introduced. The concepts of single-valued neutrosophic groups and their approximations have also been applied in the development of fuzzy systems, enhancing their ability to model and reason using uncertain and imprecise information.

Article Details

References

  1. Z. Pawlak, Rough Sets, Int. J. Comput. Inform. Sci. 11 (1982), 341–356. https://doi.org/10.1007/bf01001956.
  2. Z. Pei, D. Pei, L. Zheng, Topology vs Generalized Rough Sets, Int. J. Approx. Reason. 52 (2011), 231–239. https://doi.org/10.1016/j.ijar.2010.07.010.
  3. X. Chen, Q. Li, Construction of Rough Approximations in Fuzzy Setting, Fuzzy Sets Syst. 158 (2007), 2641–2653. https://doi.org/10.1016/j.fss.2007.05.016.
  4. D. Dubois, H. Prade, Rough Fuzzy Sets and Fuzzy Rough Sets, Int. J. Gen. Syst. 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107.
  5. Z. Li, T. Xie, Roughness of Fuzzy Soft Sets and Related Results, Int. J. Comput. Intell. Syst. 8 (2015), 278–296. https://doi.org/10.1080/18756891.2015.1001951.
  6. G. Liu, Generalized Rough Sets Over Fuzzy Lattices, Inform. Sci. 178 (2008), 1651–1662. https://doi.org/10.1016/j.ins.2007.11.010.
  7. W. Wu, Generalized Fuzzy Rough Sets, Inform. Sci. 151 (2003), 263–282. https://doi.org/10.1016/s0020-0255(02)00379-1.
  8. M.I. Ali, A Note on Soft Sets, Rough Soft Sets and Fuzzy Soft Sets, Appl. Soft Comput. 11 (2011), 3329–3332. https://doi.org/10.1016/j.asoc.2011.01.003.
  9. D. Molodtsov, Soft Set Theory–First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/s0898-1221(99)00056-5.
  10. D. Boixader, J. Jacas, J. Recasens, Upper and Lower Approximations of Fuzzy Sets, Int. J. Gen. Syst. 29 (2000), 555–568. https://doi.org/10.1080/03081070008960961.
  11. W.Z. Wu, A Study on Relationship Between Fuzzy Rough Approximation Operators and Fuzzy Topological Spaces, Springer-Verlag, Berlin, Heidelberg, (2005).
  12. A.M. Abd El-Latif, Generalized Soft Rough Sets and Generated Soft Ideal Rough Topological Spaces, J. Intell. Fuzzy Syst. 34 (2018), 517–524. https://doi.org/10.3233/jifs-17610.
  13. J. Mahanta, P.K. Das, Fuzzy Soft Topological Spaces, J. Intell. Fuzzy Syst. 32 (2017), 443–450. https://doi.org/10.3233/jifs-152165.
  14. C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247x(68)90057-7.
  15. F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 6th ed. InfoLearnQuest, Ann Arbor, MI, USA. (2007).
  16. H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Single Valued Neutrosophic Sets, Multispace Multistruct. 4 (2010), 410–413.
  17. H.L. Yang, Z.L. Guo, Y. She, X. Liao, On Single Valued Neutrosophic Relations, J. Intell. Fuzzy Syst. 30 (2016), 1045–1056. https://doi.org/10.3233/ifs-151827.
  18. Q. Jin, K. Hu, C. Bo, L. Li, A New Single-Valued Neutrosophic Rough Sets and Related Topology, J. Math. 2021 (2021), 5522021. https://doi.org/10.1155/2021/5522021.
  19. F. Alsharari, Y.M. Saber, GΘ*τj τi -Fuzzy Closure Operator, New Math. Nat. Comput. 16 (2020), 123–141. https://doi.org/10.1142/s1793005720500088.
  20. F. Alsharari, Y.M. Saber, F. Smarandache, Compactness on Single-Valued Neutrosophic Ideal Topological Spaces, Neutrosophic Sets Syst. 41 (2021), 127–145.
  21. Y.M. Saber, M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Appl. Math. Sci. 8 (2014), 1667–1691. https://doi.org/10.12988/ams.2014.33194.
  22. Y. Saber, F. Alsharari, F. Smarandache, An Introduction to Single-Valued Neutrosophic Soft Topological Structure, Soft Comput. 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4.
  23. Y.M. Saber, F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in Sostak Sense, Int. J. Fuzzy Log. Intell. Syst. 18 (2018), 161–166. https://doi.org/10.5391/ijfis.2018.18.3.161.
  24. Y. Saber, F. Alsharari, F. Smarandache, On Single-Valued Neutrosophic Ideals in Sostak Sense, Symmetry. 12 (2020), 193. https://doi.org/10.3390/sym12020193.
  25. Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, Connectedness and Stratification of Single-Valued Neutrosophic Topological Spaces, Symmetry. 12 (2020), 1464. https://doi.org/10.3390/sym12091464.
  26. Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, On Single Valued Neutrosophic Regularity Spaces, Comput. Model. Eng. Sci. 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782.
  27. Y. Saber, Connectedness in Single-Valued Neutrosophic Soft Grill Topological Spaces, Int. J. Anal. Appl. 21 (2023), 137. https://doi.org/10.28924/2291-8639-21-2023-137.
  28. Y. Saber, H. Alohali, T. Elmasry, F. Smarandache, On Single-Valued Neutrosophic Soft Uniform Spaces, AIMS Math. 9 (2024), 412–439. https://doi.org/10.3934/math.2024023.
  29. A.M. Zahran, S.A.A. El-Baki, Y.M. Saber, Decomposition of Fuzzy Ideal Continuity via Fuzzy Idealization, Int. J. Fuzzy Log. Intell. Syst. 9 (2009), 83–93. https://doi.org/10.5391/ijfis.2009.9.2.083.
  30. A.M. Zahran, S.E. Abbas, S.A. Abd El-baki, Y.M. Saber, Decomposition of Fuzzy Continuity and Fuzzy Ideal Continuity via Fuzzy Idealization, Chaos Solitons Fractals. 42 (2009), 3064–3077. https://doi.org/10.1016/j.chaos.2009.04.010.