Estimation of Parameters for the Mathematical Model of the Spread of Hepatitis B in Burkina Faso Using Grey Wolf Optimizer

Main Article Content

Adama Kiemtore, Wenddabo Olivier Sawadogo, Ibrahim Zangré, Pengdewendé Ousséni Fabrice Ouedraogo, Ihsane Mouaouia

Abstract

In this paper, we developed a mathematical model of differential susceptibility, taking into account vaccination and treatment, to simulate the transmission of the hepatitis B virus in the population of Burkina Faso. The existence and uniqueness of non-negative solutions are proved. The model has a globally asymptotically stable disease free equilibrium when the basic reproduction number R0 < 1 and an endemic equilibrium when R0 > 1. We estimated the parameters of the model based on hepatitis B cases from 1997 to 2020 by using a Grey Wolf Optimizer Algorithm (GWO). The results demonstrated the efficacy of the GWO algorithm in estimating the model parameters. A sensitivity analysis was carried out to determine the determining factors in the spread of hepatitis B in Burkina Faso. The estimated parameters were used to simulate the spread of hepatitis B in Burkina Faso from 1997 to 2020.

Article Details

References

  1. P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
  2. F. Aqel, H. Alaa, N.E. Alaa, Mathematical Model of Covid-19 Transmissibility During the Vaccination Period, Eurasian J. Math. Comput. Appl. 11 (2023), 4–28.
  3. B. Bonzi, A.A. Fall, A. Iggidr, G. Sallet, Stability of Differential Susceptibility and Infectivity Epidemic Models, J. Math. Biol. 62 (2010), 39–64. https://doi.org/10.1007/s00285-010-0327-y.
  4. W.J. Edmunds, G.F. Medley, D.J. Nokes, C.J. O’Callaghan, H.C. Whittle, A.J. Hall, Epidemiological Patterns of Hepatitis B Virus (HBV) in Highly Endemic Areasr, Epidemiol. Infect. 117 (1996), 313–325. https://doi.org/10.1017/s0950268800001497.
  5. N. Meda, E. Tuaillon, D. Kania, A. Tiendrebeogo, A. Pisoni, et al., Hepatitis B and C Virus Seroprevalence, Burkina Faso: A Cross-Sectional Study, Bull. World Health Organ. 96 (2018), 750–759. https://doi.org/10.2471/blt.18.208603.
  6. J. Feld, H.L.A. Janssen, Z. Abbas, A. Elewaut, P. Ferenci, et al., World Gastroenterology Organisation Global Guideline Hepatitis B, J. Clin. Gastroenterol. 50 (2016), 691–703. https://doi.org/10.1097/mcg.0000000000000647.
  7. I. Tao, T.R. Compaore, B. Diarra, F. Djigma, T.M. Zohoncon, et al., Seroepidemiology of Hepatitis B and C Viruses in the General Population of Burkina Faso, Hepat. Res. Treat. 2014 (2014), 781843. https://doi.org/10.1155/2014/781843.
  8. K.Q. AL-Jubouri, R.M. Hussien, N.M.G. Al-Saidi, Modeling of an Eco-Epidemiological system Involving Various Epidemic Diseases with Optimal Harvesting, Eurasian J. Math. Comput. Appl. 8 (2020), 4–27. https://doi.org/10.32523/2306-6172-2020-8-2-4-27.
  9. A. Fall, A. Iggidr, G. Sallet, J.J. Tewa, Epidemiological Models and Lyapunov Functions, Math. Model. Nat. Phenom. 2 (2007), 62–83. https://doi.org/10.1051/mmnp:2008011.
  10. C. Castillo-Chavez, Z. Feng, W. Huang, On the Computation of R0 and its Role on Global Stability, Cornell University, 2011.
  11. O. Koutou, A.B. Diabaté, B. Sangaré, Mathematical Analysis of the Impact of the Media Coverage in Mitigating the Outbreak of COVID-19, Math. Comput. Simul. 205 (2023), 600–618. https://doi.org/10.1016/j.matcom.2022.10.017.
  12. X. Duan, S. Yuan, X. Li, Global Stability of an SVIR Model With Age of Vaccination, Appl. Math. Comput. 226 (2014), 528–540. https://doi.org/10.1016/j.amc.2013.10.073.
  13. A. Khan, R. Zarin, I. Ahmed, A. Yusuf, U.W. Humphries, Numerical and Theoretical Analysis of Rabies Model Under the Harmonic Mean Type Incidence Rate, Results Phys. 29 (2021), 104652. https://doi.org/10.1016/j.rinp.2021.104652.
  14. C. Castillo-Chavez, Z. Feng, W. Huang, On the Computation of R0 and its Role on Global Stability, in: C. CastilloChavez, S. Blower, P. Van Den Driessche, D. Kirschner, A.-A. Yakubu (Eds.), Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer New York, New York, NY, 2002: pp. 229–250. https://doi.org/10.1007/978-1-4757-3667-0_13.
  15. C. Castillo-Chavez, Z. Feng, Global Stability of an Age-Structure Model for Tb and Its Applications to Optimal Vaccination Strategies, Math. Biosci. 151 (1998), 135–154. https://doi.org/10.1016/s0025-5564(98)10016-0.
  16. A. Korobeinikov, Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with NonLinear Transmission, Bull. Math. Biol. 68 (2006), 615–626. https://doi.org/10.1007/s11538-005-9037-9.
  17. C. Bounkaicha, K. Allali, Y. Tabit, J. Danane, Global Dynamic of Spatio-Temporal Fractional Order SEIR Model, Math. Model. Comput. 10 (2023), 299–310. https://doi.org/10.23939/mmc2023.02.299.
  18. J.P.I. Kouenkam, J. Mbang, Y. Emvudu, Global Dynamics of a Model of Hepatitis B Virus Infection in a Sub-Saharan African Rural Area, Int. J. Biomath. 13 (2020), 2050054. https://doi.org/10.1142/s1793524520500540.
  19. W.J. Edmunds, G.F. Medley, D.J. Nokes, The Transmission Dynamics and Control of Hepatitis B Virus in the Gambia, Stat. Med. 15 (1996), 2215–2233. https://doi.org/10.1002/(sici)1097-0258(19961030)15:20%3C2215::aid-sim369%3E3.0.co;2-2.
  20. F.A. Wodajo, D.M. Gebru, H.T. Alemneh, Mathematical Model Analysis of Effective Intervention Strategies on Transmission Dynamics of Hepatitis B Virus, Sci. Rep. 13 (2023), 8737. https://doi.org/10.1038/s41598-023-35815-z.
  21. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw. 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  22. A.V. Kamyad, R. Akbari, A.A. Heydari, A. Heydari, Mathematical Modeling of Transmission Dynamics and Optimal Control of Vaccination and Treatment for Hepatitis B Virus, Comput. Math. Meth. Med. 2014 (2014), 475451. https://doi.org/10.1155/2014/475451.
  23. T. Khan, I.H. Jung, A. Khan, G. Zaman, Classification and Sensitivity Analysis of the Transmission Dynamic of Hepatitis B, Theor. Biol. Med. Model. 14 (2017), 22. https://doi.org/10.1186/s12976-017-0068-3.
  24. F.A. Wodajo, D.M. Gebru, H.T. Alemneh, Mathematical Model Analysis of Effective Intervention Strategies on Transmission Dynamics of Hepatitis B Virus, Sci. Rep. 13 (2023), 8737. https://doi.org/10.1038/s41598-023-35815-z.
  25. M. Lingani, T. Akita, S. Ouoba, A.M. Sanou, A. Sugiyama, et al., High Prevalence of Hepatitis B Infections in Burkina Faso (1996-2017): A Systematic Review With Meta-Analysis of Epidemiological Studies, BMC Public Health. 18 (2018), 551. https://doi.org/10.1186/s12889-018-5432-7.
  26. J.R. Williams, D.J. Nokes, G.F. Medley, R.M. Anderson, The Transmission Dynamics of Hepatitis B in the Uk: A Mathematical Model for Evaluating Costs and Effectiveness of Immunization Programmes, Epidemiol. Infect. 116 (1996), 71–89. https://doi.org/10.1017/s0950268800058970.
  27. A. Din, Y. Li, M.A. Shah, The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control, J. Syst. Sci. Complex. 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0.
  28. T.T. Mamo, T.T. Mekonnen, An Age Structure Mathematical Model Analysis on the Dynamics of Chronic and Hyper Toxic Forms of Hepatitis B Virus by Model with Vaccination Intervention Control Strategy in Ethiopia, Int. J. Sci.: Basic Appl. Res. 50 (2020), 106–136.
  29. D.T. Anley, M. Dagnaw, D.G. Belay, D. Tefera, Z.T. Tessema, et al., Modelling of Hepatitis B Virus Vertical Transmission Dynamics in Ethiopia: A Compartmental Modelling Approach, BMC Infect. Dis. 23 (2023), 366. https://doi.org/10.1186/s12879-023-08343-4.
  30. W.J. Edmunds, G.F. Medley, D.J. Nokes, Vaccination Against Hepatitis B Virus in Highly Endemic Areas: Waning Vaccine-Induced Immunity and the Need for Booster Doses, Trans. R. Soc. Trop. Med. Hyg. 90 (1996), 436–440. https://doi.org/10.1016/s0035-9203(96)90539-8.
  31. P. Lampertico, K. Agarwal, T. Berg, M. Buti, H.L.A. Janssen, G. Papatheodoridis, F. Zoulim, F. Tacke, EASL 2017 Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection, J. Hepatol. 67 (2017), 370–398. https://doi.org/10.1016/j.jhep.2017.03.021.
  32. Y. Shi, M. Zheng, Hepatitis B Virus Persistence and Reactivation, BMJ. 370 (2020), m2200. https://doi.org/10.1136/bmj.m2200.
  33. C.A. Dovonou, S.A. Amidou, A.A. Kpangon, Y.A. Traoré, T.P. Martial, et al., Prévalence de l’Hépatite B Chez les Personnes Infectées par le VIH à Parakou au Bénin, Pan Afr. Med. J. 20 (2015), 125. https://doi.org/10.11604/pamj.2015.20.125.6061.
  34. A.J. Olajide, A. Afeez, J.O. Oluwaseun, A. Folake O., Mathematical Modeling of Transmission Dynamics and Optimal Control of Isolation, Vaccination and Treatment for Hepatitis B Virus, Gen. Lett. Math. 5 (2018), 132–147. https://doi.org/10.31559/glm2018.5.3.3.
  35. D. Mahardika, R.H. Tjahjana, Sunarsih, Dynamic Modelling of Hepatitis B and Use of Optimal Control to Reduce the Infected Population and Minimizing the Cost of Vaccination and Treatment, AIP Conf. Proc. 2331 (2021), 020013. https://doi.org/10.1063/5.0041590.
  36. H. Alrabaiah, M.A. Safi, M.H. DarAssi, B. Al-Hdaibat, S. Ullah, M.A. Khan, S.A. Ali Shah, Optimal Control Analysis of Hepatitis B Virus With Treatment and Vaccination, Results Phys. 19 (2020), 103599. https://doi.org/10.1016/j.rinp.2020.103599.
  37. J.K.K. Asamoah, Z. Jin, G.Q. Sun, Non-Seasonal and Seasonal Relapse Model for Q Fever Disease With Comprehensive Cost-Effectiveness Analysis, Results Phys. 22 (2021), 103889. https://doi.org/10.1016/j.rinp.2021.103889.
  38. J. Norton, An Introduction to Sensitivity Assessment of Simulation Models, Environ. Model. Softw. 69 (2015), 166–174. https://doi.org/10.1016/j.envsoft.2015.03.020.
  39. B.S. Sheena, L. Hiebert, H. Han, H. Ippolito, M. Abbasi-Kangevari, et al., Global, Regional, and National Burden of Hepatitis B, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019, Lancet Gastroenterol. Hepatol. 7 (2022), 796–829. https://doi.org/10.1016/s2468-1253(22)00124-8.
  40. M. Masseta, Incidental Discovery of HBs Antigen at the Y.O. University Hospital: Socio-Demographic, Clinical and Paraclinical Aspects, Phd Thesis Joseph Ki-Zerbo University, Ouagadougou, 2018.
  41. Ministry of Health, Standards and Protocols for the Management of Viral Hepatitis in Burkina Faso, Ouagadougou, 2019.
  42. INSD, Fifth General Census of Population and Housing of Burkina Faso, National Institute of Statistics and Demography, 2022.
  43. Ministry of Health Burkina, Hepatitis B, Cirrhosis and Primary Liver Cancer Kill Nearly 5,000 People a Year, 2017.
  44. A.A. Fall, Studies of Some Epidemiological Models: Application to the Transmission of the Hepatitis B Virus in Sub-Saharan Africa (Case of Senegal), PhD Thesis, University Paul Verlaine Metz and Gaston Berger University, 2013.
  45. R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford science publications, Oxford University Press, Oxford, 1991.
  46. V. Lakshmikantham, S. Leela, A.A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, New York, 1989.
  47. J.P. LaSalle, The Stability of Dynamical Systems, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976.
  48. G.G. Kuei, Analysis of Vertical Transmission Dynamics of Infectious Hepatitis B Virus: Mathematical Model Involving Vaccination and Treatment in Turkana County, Kenya, Master Thesis, Kenyatta University, 2022.