New Auxiliary Principle Technique for General Harmonic Directional Variational Inequalities

Main Article Content

A. A. Alshejari, M. A. Noor, K. I. Noor


This paper explores the utilisation of harmonic variational inequalities to establish the minimum value among two locally Lipschitz continuous harmonic convex functions. This investigation introduces novel classes of harmonic directed variational inequalities, particularly focusing on scenarios like harmonic complementarity and related optimization challenges. The study proposes and analyses various inertial iterative strategies for addressing harmonic directed variational inequalities through the auxiliary principle technique. It examines convergence criteria under specific weak conditions, emphasising the simplicity of the approach compared to other methodologies. The findings presented herein have broad applicability in the context of harmonic variational inequalities and optimization problems, though they are limited to theoretical exploration. Further research is required to implement these strategies numerically.

Article Details


  1. A.A. AlShejari, M.A. Noor, K.I. Noor, Inertial Algorithms for Bifunction Harmonic Variational Inequalities, Int. J. Anal. Appl. 22 (2024), 46.
  2. F. Al-Azemi, O. Calin, Asian Options With Harmonic Average, Appl. Math. Inform. Sci. 9 (2015), 2803–2811.
  3. F. Alvarez, Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space, SIAM J. Optim. 14 (2004), 773–782.
  4. G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Generalized Convexity and Inequalities, J. Math. Anal. Appl. 335 (2007), 1294–1308.
  5. L.M. Bregman, The Relaxation Method of Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming, USSR Comput. Math. Math. Phys. 7 (1967), 200–217.
  6. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
  7. R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem, SIAM, Philadelphia, 1992.
  8. G. Cristescu, L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, 2002.
  9. G. Cristescu, M. Gianu, Detecting the Non-Convex Sets With Youness and Noor Types Convexities, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat.-Fiz. 55 (2010), 20–27.
  10. G. Cristescu, G. Mihail, Shape Properties of Noor’s g-Convex Sets, in: Proceeding of the 12th Symposium of Mathematics and Its Applications, Timisoara, Romania, (2009), 1-13.
  11. G. Cristescu, G. Mihail, Computer Aided Optimization Techniques Based Generalized Convex Maps, in: Annals of the Oradea University, Fascicle of Management and Technological Engineering, 2011.
  12. F. Giannessi, A. Maugeri, M.S. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Kluwer Academic, Dordrecht, 2001.
  13. R. Glowinski, J.L. Lions, R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
  14. I. Iscan, Hermite-Hadamard Type Inequalities for Harmonically Convex Functions, Hacettepe J. Math. Stat. 43 (2014), 935–942.
  15. A.G. Khan, M.A. Noor, M. Pervez, K.I. Noor, Relative Reciprocal Variational Inequalities, Honam Math. J. 40 (2018), 509–519.
  16. J.L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math. 20 (1967), 493–519.
  17. M. Aslam Noor, On Variational Inequalities, PhD Thesis, Brunel University, London, 1975.
  18. M.A. Noor, General Variational Inequalities, Appl. Math. Lett. 1 (1988), 119–122.
  19. M.A. Noor, General Algorithm for Variational Inequalities, J. Optim. Theory Appl. 73 (1992), 409–413.
  20. M.A. Noor, Differentiable Non-Convex Functions and General Variational Inequalities, Appl. Math. Comput. 199 (2008), 623–630.
  21. M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229.
  22. M. Aslam Noor, Some Developments in General Variational Inequalities, Appl. Math. Comput. 152 (2004), 199–277.
  23. M.A. Noor, K.I. Noor, Higher Order Generalized Variational Inequalites and Noncovex Optimization, U.P.B. Sci. Bull., Ser. A, 85 (2023), 77–88.
  24. M.A. Noor, K.I. Noor, Harmonic Variational Inequalities, Appl. Math. Inf. Sci. 10 (2016), 1811–1814.
  25. M.A. Noor, K.I. Noor, Some Implicit Methods for Solving Harmonic Variational Inequalities, Int. J. Anal. Appl. 12 (2016), 10–14.
  26. M.A. Noor, K.I. Noor, Some New Classes of Harmonic Hemivariational Inequalities, Earthline J. Math. Sci. 13 (2023), 473–495.
  27. M. A. Noor and K. I. Noor, New Iterative Schemes for General Harmonic Variational Inequalities, J. Math. Anal. In Press.
  28. M.A. Noor, K.I. Noor, Generalized Biconvex Functions and Directional Bivariational Inequalities, Transylvanian J. Math. Mech. 15 (2023), 79–95.
  29. M.A. Noor, K.I. Noor, Dynamical System Technique for Solving Quasi Variational Inequalities, U.P.B. Sci. Bull., Ser. A. 84 (2022), 55–66.
  30. M.A. Noor, K.I. Noor, M.U. Awan, Exponentially Harmonic General Variational Inequalities, Montes Taurus J. Pure Appl. Math. 6 (2024), 110–118.
  31. M.A. Noor, K.I. Noor, S. Iftikhar, Integral Inequalities for Differentiable Relative Harmonic Preinvex Functions (Survey), TWMS J. Pure Appl. Math. 7 (2016), 3–19.
  32. M.A. Noor, A.G. Khan, A. Pervaiz, K.I. Noor, Solution of Harmonic Variational Inequalities by Two-Step Iterative Scheme, Turk. J. Inequal. 1 (2017), 46–52.
  33. M.A. Noor, K.I. Noor, S. Iftikhar, Strongly Generalized Harmonic Convex Functions and Integral Inequalities, J. Math. Anal. 7 (2016), 66–77.
  34. M.A. Noor, K.I. Noor, S. Iftikhar, Some Characterizations of Harmonic Convex Functions, Int. J. Anal. Appl. 15 (2017), 179–187.
  35. M.A. Noor, K.I. Noor, Higher Order Generalized Variational Inequalites and Noncovex Optimization, U.P.B. Sci. Bull., Ser. A, 85 (2023), 77–88.
  36. M.A. Noor, K.I. Noor, M.T. Rassias, New Trends in General Variational Inequalities, Acta Appl. Math. 170 (2020), 981–1064.
  37. M.A. Noor, K.I. Noor, T.M. Rassias, Some Aspects of Variational Inequalities, J. Comput. Appl. Math. 47 (1993), 285–312.
  38. M.A. Noor, W. Oettli, On General Nonlinear Complementarity Problems and Quasi Equilibria, Le Math. 49 (1994), 313–331.
  39. M. Patriksson, Nonlinear Programming and Variational Inequalities: A Unified Approach, Kluwer Academic Publishers, Dordrecht, 1999.
  40. Z. Pavic, M. Avci Ardic, The Most Important Inequalities of m-Convex Functions, Turk. J. Math. 41 (2017), 625–635.
  41. J.E. Pecaric, F. Proschan, Y.L. Tong, Convex Functions and Statistical Applications, Academic Press, New York, 1992.
  42. B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. 4 (1964), 1–17.
  43. G. Stampacchia, Formes Bilineaires Coercitives sur les Ensembles Convexes, C. R. Acad. Sci. Paris. 258 (1964), 4413–4416.
  44. G. Toader, Some Generalizations of the Convexity, In: Proc. Colloq. Approx. Optim. Cluj-Napoca, Romania, Univ. Cluj-Napoca, (1985), 329–338.
  45. E.A. Youness, E-Convex Sets, E-Convex Functions, and E-Convex Programming, J. Optim. Theory Appl. 102 (1999), 439–450.
  46. D.L. Zhu, P. Marcotte, Co-Coercivity and Its Role in the Convergence of Iterative Schemes for Solving Variational Inequalities, SIAM J. Optim. 6 (1996), 714–726.