Some Results on Subspace Cesaro-Hypercyclic Operators

Main Article Content

Mohammed El Berrag

Abstract

In this paper we characterize the notion of subspace Cesaro-hypercyclic. At the same time, we also provide a Subspace Cesaro-hypercyclic Criterion and offer an equivalent conditions of this criterion.

Article Details

References

  1. F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, 2009.
  2. T. Bermudez, A. Bonilla, A. Peris, On Hypercyclicity and Supercyclicity Criteria, Bull. Aust. Math. Soc. 70 (2004), 45–54. https://doi.org/10.1017/s0004972700035802.
  3. P.S. Bourdon, J.H. Shapiro, Cyclic Phenomena for Composition Operators, American Mathematical Society, 1997.
  4. M. El Berrag, A. Tajmouati, On Subspace-Supercyclic Semigroup, Commun. Korean Math. Soc. 33 (2018), 157–164. https://doi.org/10.4134/CKMS.C170047.
  5. N. Feldman, Hypercyclicity and Supercyclicity for Invertible Bilateral Weighted Shifts, Proc. Amer. Math. Soc. 131 (2003), 479–485.
  6. N. Feldman, V. Miller, L. Miller, Hypercyclic and Supercyclic Cohyponormal Operators, Acta Sci. Math. 68 (2002), 303–328.
  7. R.M. Gethner, J.H. Shapiro, Universal Vectors for Operators on Spaces of Holomorphic Functions, Proc. Amer. Math. Soc. 100 (1987), 281–288.
  8. K.G. Grosse-Erdmann, A.P. Manguillot, Linear Chaos, Springer, 2011.
  9. H.M. Hilden, L.J. Wallen, Some Cyclic and Non-Cyclic Vectors of Certain Operator, Indiana Univ. Math. J. 23 (1974), 557–565. https://www.jstor.org/stable/24890788.
  10. R.R. Jimenez-Munguia, R.A. Martinez-Avendano, A. Peris, Some Questions About Subspace-Hypercyclic Operators, J. Math. Anal. Appl. 408 (2013), 209–212. https://doi.org/10.1016/j.jmaa.2013.05.068.
  11. C. Kitai, Invariant Closed Sets for Linear Operators, Dissertation, University of Toronto, 1982.
  12. C.M. Le, On Subspace-Hypercyclic Operators, Proc. Amer. Math. Soc. 139 (2011), 2847–2852.
  13. F. León-Saavedra, Operators with Hypercyclic Cesàro Means, Stud. Math. 152 (2002), 201–215.
  14. B.F. Madore, R.A. Martinez-Avendano, Subspace Hypercyclicity, J. Math. Anal. Appl. 373 (2011), 502–511. https://doi.org/10.1016/j.jmaa.2010.07.049.
  15. H. Rezaei, Notes on Subspace-Hypercyclic Operators, J. Math. Anal. Appl. 397 (2013), 428–433. https://doi.org/10.1016/j.jmaa.2012.08.002.
  16. S. Rolewicz, On Orbits of Elements, Stud. Math. 32 (1969), 17–22. https://cir.nii.ac.jp/crid/1363107370656529920.
  17. H.N. Salas, Hypercyclic Weighted Shifts, Trans. Amer. Math. Soc. 347 (1995), 993–1004.
  18. H.N. Salas, Supercyclicity and Weighted Shifts, Stud. Math. 135 (1999), 55–74.
  19. A. Tajmouati, M. El Berrag, Some Results on Hypercyclicity of Tuple of Operators, Italian J. Pure Appl. Math. 35 (2015), 487–492.
  20. A. Tajmouati, B. El Mohammed, Weyl Type Theorems for Cesaro-Hypercyclic Operators, Filomat 33 (2019), 5639– 5644. https://doi.org/10.2298/fil1917639t.
  21. X.F. Zhao, Y.L. Sun, Y.H. Zhou, Subspace-Supercyclicity and Common Subspace-Supercyclic Vectors, J. East China Norm. Univ. Nat. Sci. Ed. 2012 (2012), 107–112.