Mathematical Modelling and Application of Analytical Methods for A Non-Linear EC2E Mechanism in Rotating Disk Electrode
Main Article Content
Abstract
Rotating disk electrode is the hydrodynamic technique used in the process of analyzing electroanalytic works. This paper deals with the mathematical model describing a non-linear EC2E mechanism that arises in a rotating disk electrode. This model is based on the system of non-linear reaction-convection-diffusion equations. EC2E mechanism has an application in finding the shape of current curves in the system of chronoamperometry in addition to steady-state voltammetry. The approximate analytical expression for the concentration of reactant species and current at steady-state condition is obtained using the analytical methods. The attained analytical result is compared with the numerical simulation (MATLAB) result. A satisfactory result is obtained between the series of solutions. The influence of parameters on the concentration of species and current is investigated and presented graphically.
Article Details
References
- F. Opekar, P. Beran, Rotating Disk Electrodes, J. Electroanal. Chem. Interfacial Electrochem. 69 (1976), 1–105. https://doi.org/10.1016/s0022-0728(76)80129-5.
- Th. Von Kármán, Uber Laminare und Turbulente Reibung, Z. Angew. Math. Mech. 1 (1921), 233-252.
- J. Visuvasam, A. Molina, E. Laborda, L. Rajendran, Mathematical Models of the Infinite Porous Rotating Disk Electrode, Int. J. Electrochem. Sci. 13 (2018), 9999–10022. https://doi.org/10.20964/2018.10.35.
- D. Okuonghae, Application of Hp-Discontinuous Galerkin Finite Element Methods to the Rotating Disk Electrode Problems in Electrochemistry, J. Appl. Math. Comput. 22 (2006), 1–20. https://doi.org/10.1007/bf02896457.
- R. Gulaboski, Surface ECE Mechanism in Protein Film Voltammetry—A Theoretical Study Under Conditions of Square-Wave Voltammetry, J. Solid State Electrochem. 13 (2008), 1015–1024. https://doi.org/10.1007/s10008-008-0665-5.
- K.M. Yen, T. Yeu, R.E. White, A Mathematical Model of Electrochemical Reactions Coupled With Homogeneous Chemical Reactions, J. Electrochem. Soc. 138 (1991), 1051-1054.
- S. Yen, T.W. Chapman, Current Distribution on a Rotating Disk Electrode: Effects of Migration and Reactions, J. Electrochem. Soc. 134 (1987), 1964–1972. https://doi.org/10.1149/1.2100798.
- R. Saravanakumar, P. Pirabaharan, L. Rajendran, The Theory of Steady State Current for Chronoamperometric and Cyclic Voltammetry on Rotating Disk Electrodes for EC’ and ECE Reactions, Electrochimica Acta, 313 (2019), 441–456. https://doi.org/10.1016/j.electacta.2019.05.033.
- T. Praveen, P. Valencia, L. Rajendran, Theoretical Analysis of Intrinsic Reaction Kinetics and the Behavior of Immobilized Enzymes System for Steady-State Conditions, Biochem. Eng. J. 91 (2014), 129–139. https://doi.org/10.1016/j.bej.2014.08.001.
- J.H. He, M.L. Jiao, K.A. Gepreel, Y. Khan, Homotopy Perturbation Method for Strongly Nonlinear Oscillators, Math. Comp. Simul. 204 (2023), 243–258. https://doi.org/10.1016/j.matcom.2022.08.005.
- M.R. Akbari, D.D. Ganji, A. Majidian, A.R. Ahmadi, Solving Nonlinear Differential Equations of Vanderpol, Rayleigh and Duffing by AGM, Front. Mech. Eng. 9 (2014), 177–190. https://doi.org/10.1007/s11465-014-0288-8.
- A. Afreen, A. Raheem, Study of a Nonlinear System of Fractional Differential Equations with Deviated Arguments Via Adomian Decomposition Method, Int. J. Appl. Comput. Math 8 (2022), 269. https://doi.org/10.1007/s40819-022-01464-5.
- O.M. Kirthiga, M. Sivasankari, R. Vellaiammal, L. Rajendran, Theoretical Analysis of Concentration of Lactose Hydrolysis in a Packed Bed Reactor Using Immobilized β-Galactosidase, Ain Shams Eng. J. 9 (2018), 1507–1512. https://doi.org/10.1016/j.asej.2016.10.007.
- A. Meena, L. Rajendran, Analytical Solution of System of Coupled Non-Linear Reaction Diffusion Equations. Part I: Mediated Electron Transfer at Conducting Polymer Ultramicroelectrodes, J. Electroanal. Chem. 647 (2010), 103–116. https://doi.org/10.1016/j.jelechem.2010.06.013.
- A. Nebiyal, R. Swaminathan, S.G. Karpagavalli, Reaction Kinetics of Amperometric Enzyme Electrode in Various Geometries Using the Akbari-Ganji Method, Int. J. Electrochem. Sci. 18 (2023), 100240. https://doi.org/10.1016/j.ijoes.2023.100240.
- K. Ranjani, R. Swaminathan, S.G. Karpagavalli, Mathematical Modelling of a Mono-Enzyme Dual Amperometric Biosensor for Enzyme-Catalyzed Reactions Using Homotopy Analysis and Akbari-Ganji Methods, Int. J. Electrochem. Sci. 18 (2023), 100220. https://doi.org/10.1016/j.ijoes.2023.100220.
- A. Reena, SG. Karpagavalli, L. Rajendran, B. Manimegalai, R. Swaminathan, Theoretical Analysis of Putrescine Enzymatic Biosensor with Optical Oxygen Transducer in Sensitive Layer Using Akbari–Ganji Method, Int. J. Electrochem. Sci. 18 (2023), 100113. https://doi.org/10.1016/j.ijoes.2023.100113.
- A. Reena, SG. Karpagavalli, R. Swaminathan, Theoretical Analysis and Steady-State Responses of The Multienzyme Amperometric Biosensor System for Nonlinear Reaction-Diffusion Equations, Int. J. Electrochem. Sci. 18 (2023), 100293. https://doi.org/10.1016/j.ijoes.2023.100293.
- S. Vinolyn Sylvia, R. Joy Salomi, L. Rajendran, M. Abukhaled, Solving Nonlinear Reaction–Diffusion Problem in Electrostatic Interaction with Reaction-Generated pH Change on the Kinetics of Immobilized Enzyme Systems Using Taylor Series Method, J. Math. Chem. 59 (2021), 1332–1347. https://doi.org/10.1007/s10910-021-01241-7.
- R. Swaminathan, K. Venugopal, M. Rasi, M. Abukhaled, L. Rajendran, Analytical Expressions for the Concentration and Current in the Reduction of Hydrogen Peroxide at a Metal-Dispersed Conducting Polymer Film, Quim. Nova. 43 (2020), 58–65. https://doi.org/10.21577/0100-4042.20170454.
- R. Usha Rani, L. Rajendran, M.E.G. Lyons, Steady-State Current in Product Inhibition Kinetics in an Amperometric Biosensor: Adomian Decomposition and Taylor Series Method, J. Electroanal. Chem. 886 (2021), 115103. https://doi.org/10.1016/j.jelechem.2021.115103.
- R. Swaminathan, M. Chitra Devi, L. Rajendran, K. Venugopal, Sensitivity and Resistance of Amperometric Biosensors in Substrate Inhibition Processes, J. Electroanal. Chem. 895 (2021), 115527. https://doi.org/10.1016/j.jelechem.2021.115527.