Some Novel Coincidence and Fixed Point Results Based on Z Family of Functions in Fuzzy Metrics

Main Article Content

Maryam G. Alshehri, Ayush Bartwal, Shivam Rawat, Junaid Ahmad, Neelanjana Rajput

Abstract

This paper suggests some coincidence and fixed point theorems based on the Z family functions for set valued mappings. After that, we provide the concept of Z family of functions, and prove some coincidence and fixed points results for strongly demicompact mappings in fuzzy metric space. We also suggest some examples to support our results. Eventually, we give the existence and uniqueness of a solution for a functional equation involved in a dynamic programming. Our results are novel and suggest a new direction to researchers who working in the theory of coincidence and fixed point.

Article Details

References

  1. J. Ahmad, M. Arshad, A Novel Fixed Point Approach Based on Green’s Function for Solution of Fourth Order BVPs, J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02071-x.
  2. J. Ahmad, K. Ullah, M. Arshad, Approximation of Fixed Points for a Class of Mappings Satisfying Property (CSC) in Banach Spaces, Math. Sci. 15 (2021), 207–213. https://doi.org/10.1007/s40096-021-00407-3.
  3. J. Ahmad, M. Arshad, Z. Ma, Numerical Solutions of Troesch’s Problem Based on a Faster Iterative Scheme With an Application, AIMS Math. 9 (2024), 9164–9183. https://doi.org/10.3934/math.2024446.
  4. S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181.
  5. I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika, 11 (1975), 336–344. http://dml.cz/dmlcz/125556.
  6. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
  7. B. Schweizer, A. Sklar, Statistical Metric Spaces, Pac. J. Math. 10 (1960), 314–334.
  8. L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  9. J. Rodríguez-López, S. Romaguera, The Hausdorff Fuzzy Metric on Compact Sets, Fuzzy Sets Syst. 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007.
  10. S. Shukla, D. Gopal, W. Sintunavarat, A New Class of Fuzzy Contractive Mappings and Fixed Point Theorems, Fuzzy Sets Syst. 350 (2018), 85–94. https://doi.org/10.1016/j.fss.2018.02.010.
  11. D. Rakic, T. Došenovic, Z.D. Mitrovic, M. de la Sen, S. Radenovic, Some fixed Point Theorems of Ciric Type in Fuzzy Metric Spaces, Mathematics, 8 (2020), 297. https://doi.org/10.3390/math8020297.
  12. M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
  13. O. Hadžic, Fixed Point Theorems for Multivalued Mappings in Probabilistic Metric Spaces, Mat. Vesnik, 3 (1979), 125–133.
  14. V. Gregori, A. Sapena, On Fixed-Point Theorems in Fuzzy Metric Spaces, Fuzzy Sets Syst. 125 (2002), 245–252. https://doi.org/10.1016/s0165-0114(00)00088-9.
  15. P. Tirado, Contraction Mappings in Fuzzy Quasi-Metric Spaces and [0, 1]-Fuzzy Posets, Fixed Point Theory, 13 (2012), 273–283. http://hdl.handle.net/10251/56871.
  16. D. Mihet, Fuzzy Ψ-Contractive Mappings in Non-Archimedean Fuzzy Metric Spaces, Fuzzy Sets Syst. 159 (2008), 739–744. https://doi.org/10.1016/j.fss.2007.07.006.
  17. D. Wardowski, Fuzzy Contractive Mappings and Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 222 (2013), 108–114. https://doi.org/10.1016/j.fss.2013.01.012.
  18. O. Hadžic, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Springer Netherlands, Dordrecht, 2001. https://doi.org/10.1007/978-94-017-1560-7.
  19. Y. Liu, Z. Li, Coincidence Point Theorems in Probabilistic and Fuzzy Metric Spaces, Fuzzy Sets Syst. 158 (2007), 58–70. https://doi.org/10.1016/j.fss.2006.07.010.
  20. O. Hadžic, On Coincidence Point Theorems for Multivalued Mappings in Probabilistic Metric Spaces, Univ. Novom Sadu Zb. Rad. Prir.-Mat. Fak., Ser. Mat. 25 (1995), 1–7.
  21. T. Došenovic, D. Rakic, B. Caric, S. Rodenovic, Multivalued Generalizations of Fixed Point Results in Fuzzy Metric Spaces, Nonlinear Anal. Model. Control, 21 (2016), 211–222. https://doi.org/10.15388/na.2016.2.5.