Statistical Convergence with Rough I3-Lacunary and Wijsman Rough I3-Statistical Convergence in 2-Normed Spaces

Main Article Content

M.H.M. Rashid, Sameer A. Al-Subh

Abstract

In this paper, we have introduced the concept of the set of rough I3-lacunary limit points for triple sequences in 2-normed spaces. We have established statistical convergence requirements associated with this set. Furthermore, we have introduced the idea of rough I3-lacunary statistical convergence for triple sequences. Additionally, we have demonstrated that this set of rough I3-lacunary limit points is both convex and closed within the context of a 2-normed space. We have also explored the relationships between a sequence’s rough I3-lacunary statistical cluster points and its rough I3-lacunary statistical limit points in the same 2-normed space. Expanding upon the concept of triple sequence spaces, we have introduced the notion of Wijsman I3-Cesáro summability for triple sequences. In doing so, we have investigated the connections between Wijsman strongly I3-Cesáro summability and Wijsman statistical I3-Cesáro summability. Furthermore, we have introduced the concepts of Wijsman rough strongly p-lacunary summability of order α and Wijsman rough lacunary statistical convergence of order α for triple sequences. These new concepts have been subjected to a thorough examination to understand their characteristics, and we have explored potential connections between them. Additionally, we have investigated how these newly introduced concepts relate to existing notions in the literature.

Article Details

References

  1. N.H. Altaweel, M.H.M. Rashid, O. Albalawi, M.G. Alshehri, N.H.E. Eljaneid, R. Albalawi, On the Ideal Convergent Sequences in Fuzzy Normed Space, Symmetry 15 (2023), 936. https://doi.org/10.3390/sym15040936.
  2. N.H. Altaweel, M.H.M. Rashid, M.G. Alshehri, R. Albalawi, Wijsman Lacunary Statistical Convergence of Triple Sequences with Order α, Missouri J. Math. Sci. In Press.
  3. R. Antal, M. Chawla, V. Kumar, Rough Statistical Convergence in Probabilistic Normed Spaces, Thai J. Math. 20 (2022), 1707–1719.
  4. S. Aytar, Rough Statistical Convergence, Numer. Funct. Anal. Optim. 29 (2008), 291–303. https://doi.org/10.1080/01630560802001064.
  5. S. Aytar, Rough Statistical Cluster Points, Filomat 31 (2017), 5295–5304. https://doi.org/10.2298/fil1716295a.
  6. M. Arslan, E. Dündar, I-Convergence and I-Cauchy Sequence of Functions In 2-Normed Spaces, Konuralp J. Math. 6 (2018), 57–62.
  7. M. Arslan, E. Dündar, Rough Convergence in 2-Normed Spaces, Bull. Math. Anal. Appl. 10 (2018), 1–9.
  8. M. Arslan, E. Dündar, On Rough Convergence in 2-Normed Spaces and Some Properties, Filomat 33 (2019), 5077–5086. https://doi.org/10.2298/fil1916077a.
  9. C. Çakan, B. Altay, Statistically Boundedness and Statistical Core of Double Sequences, J. Math. Anal. Appl. 317 (2006), 690–697. https://doi.org/10.1016/j.jmaa.2005.06.006.
  10. R. Çolak, Y. Altin, Statistical Convergence of Double Sequences of Order, J. Funct. Spaces Appl. 2013 (2013), 682823. https://doi.org/10.1155/2013/682823.
  11. C. Belen, M. Yildirim, On Generalized Statistical Convergence of Double Sequences via Ideals, Ann. Univ. Ferrara 58 (2011), 11–20. https://doi.org/10.1007/s11565-011-0137-1.
  12. P. Das, P. Kostyrko, W. Wilczy ´nski, P. Malik, I and I ∗ -Convergence of Double Sequences, Math. Slovaca 58 (2008), 605–620. https://doi.org/10.2478/s12175-008-0096-x.
  13. E. Dündar, C. Çakan, Rough I-Convergence, Demonstratio Math. 47 (2014), 638–651. https://doi.org/10.2478/dema-2014-0051.
  14. E. Dündar, On Rough I2-Convergence of Double Sequences, Numer. Funct. Anal. Optim. 37 (2015), 480–491. https://doi.org/10.1080/01630563.2015.1136326.
  15. S. Gähler, 2-metrische Räume und Ihre Topologische Struktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109.
  16. C. Granados, B.O. Osu, Wijsman and Wijsman Regularly Triple Ideal Convergence Sequences of Sets, Sci. Afr. 15 (2022), e01101. https://doi.org/10.1016/j.sciaf.2022.e01101.
  17. B. Lafuerza-Guillén, C. Sempi, G. Zhang, A Study of Boundedness in Probabilistic Normed Spaces, Nonlinear Anal. Theory Meth. Appl. 73 (2010), 1127–1135. https://doi.org/10.1016/j.na.2009.12.037.
  18. M. Gürdal, S. Pehlivan, The Statistical Convergence in 2-Banach Spaces, Thai J. Math. 2 (2004), 107–113.
  19. M. Gürdal, I. Açık, On I-Cauchy Sequences in 2-Normed Spaces, Math. Ineq. Appl. 11 (2008), 349–354. https://doi.org/10.7153/mia-11-26.
  20. M. Gürdal, On Ideal Convergent Sequences in 2-Normed Spaces, Thai J. Math. 4 (2006), 85–91.
  21. B. Hazarika, Lacunary Ideal Convergence of Multiple Sequences, J. Egypt. Math. Soc. 24 (2016), 54–59. https://doi.org/10.1016/j.joems.2014.07.002.
  22. H. Fast, Sur la Convergence Statistique, Colloq. Math. 2 (1951), 241–244. https://eudml.org/doc/209960.
  23. F. Bani-Ahmad, M.H.M. Rashid, Regarding the Ideal Convergence of Triple Sequences in Random 2-Normed Spaces, Symmetry 15 (2023), 1983. https://doi.org/10.3390/sym15111983.
  24. J.A. Fridy, On Statistical Convergence, Analysis 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301.
  25. J.A. Fridy, C. Orhan, Lacunary Statistical Convergence, Pac. J. Math. 160 (1993), 43–51.
  26. A.R. Freedman, J.J. Sember, M. Raphael, Some Cesàro-Type Summability Spaces, Proc. Lond. Math. Soc. s3-37 (1978), 508–520. https://doi.org/10.1112/plms/s3-37.3.508.
  27. S. Karakus, Statistical Convergence on Probabilstic Normed Spaces, Math. Commun. 12 (2007), 11–23.
  28. P. Kostyrko, T. Salat, W. Wilczynski, I-Convergence, Real Anal. Exchange 26 (2000), 669–686.
  29. P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-Convergence and Extremal I -Limit Points, Math. Slovaca 55 (2005), 443–464. https://dml.cz/handle/10338.dmlcz/132906.
  30. L.D.R. Koˇcinac, M.H.M. Rashid, On Ideal Convergence of Double Sequences in the Topology Induced by a Fuzzy 2-Norm, TWMS J. Pure Appl. Math. 8 (2017), 97–111.
  31. S. Kumar, V. Kumar, S.S. Bhatia, On Ideal Version of Lacunary Statistical Convergence of Double Sequences, Gen. Math. Notes 17 (2013), 32–44.
  32. F. Nuray, B.E. Rhoades, Statistical Convergence of Sequences of Sets, Fasc. Math. 49 (2012), 87–99.
  33. F. Nuray, U. Ulusu, E. Dündar, Lacunary Statistical Convergence of Double Sequences of Sets, Soft Comput. 20 (2015), 2883–2888. https://doi.org/10.1007/s00500-015-1691-8.
  34. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231. https://doi.org/10.1016/j.jmaa.2003.08.004.
  35. M.H.M. Rashid, L.D.R. Kocinac, Ideal Convergence in 2-Fuzzy 2-Normed Spaces, Hacettepe J. Math. Stat. 46 (2017), 149–162. https://doi.org/10.15672/hjms.2016.406.
  36. M.H.M. Rashid, Rough Statistical Convergence and Rough Ideal Convergence in Random 2-Normed Spaces, Filomat 38 (2024), 979–996. https://doi.org/10.2298/FIL2403979R.
  37. M.H.M. Rashid, Rough Ideal Convergence of Double Sequences in Probabilistic Normed Space, Poincare J. Anal. Appl. 11 (2024), 69–86.
  38. A.Sahiner, M. Gurdal, K. Duden, Triple Sequences and Their Statistical Convergence, Selcuk J. Appl. Math. 8 (2007), 49–55. https://hdl.handle.net/20.500.12395/3847.
  39. E. Sava¸s, Double Almost Lacunary Statistical Convergence of Order α, Adv. Diff. Equ. 2013 (2013), 254. https://doi.org/10.1186/1687-1847-2013-254.
  40. E. Sava¸s, On I-Lacunary Statistical Convergence of Order α for Sequences of Sets, Filomat 31 (2017), 2403–2412. https://doi.org/10.2298/fil1708403s.
  41. E. Sava¸s, P.A. Das, A Generalized Statistical Convergence via Ideals, Appl. Math. Lett. 24 (2011), 826–830. https://doi.org/10.1016/j.aml.2010.12.022.
  42. I.J. Schoenberg, The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Mon. 66 (1959), 361–775. https://doi.org/10.1080/00029890.1959.11989303.
  43. H. ¸Sengül, M. Et, On Lacunary Statistical Convergence of Order α, Acta Math. Sci. 34 (2014), 473–482. https://doi.org/10.1016/s0252-9602(14)60021-7.
  44. B.C. Tripathy, B. Hazarika, B. Choudhary, Lacunary I-Convergent Sequences, Kyungpook Math. J. 52 (2012), 473–482. https://doi.org/10.5666/KMJ.2012.52.4.473.
  45. R.F. Patterson, E. Sava¸s, Lacunary Statistical Convergence of Double Sequences, Math. Commun. 10 (2005), 55–61.
  46. H.X. Phu, Rough Convergence in Normed Linear Spaces, Numer. Funct. Anal. Optim. 22 (2001), 199–222. https://doi.org/10.1081/nfa-100103794.
  47. H.X. Phu, Rough Convergence in Infinite Dimensional Normed Spaces, Numer. Funct. Anal. Optim. 24 (2003), 285–301. https://doi.org/10.1081/nfa-120022923.
  48. H.X. Phu, Rough Continuity of Linear Operators, Numer. Funct. Anal. Optim. 23 (2002), 139–146. https://doi.org/10.1081/nfa-120003675.
  49. A. Pringsheim, Zur Theorie der Zweifach Unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
  50. U. Ulusu, E. Dündar, I-Lacunary Statistical Convergence of Sequences of Sets, Filomat 28 (2014), 1567–1574. https://www.jstor.org/stable/24897654.
  51. U. Ulusu, E. Dündar, Asymptotically I2-Lacunary Statistical Equivalence of Double Sequences of Sets, J. Ineq. Spec. Funct. 7 (2016), 44–56.