A Study of Fixed Point Results for Incompatible Mappings in Neutrosophic Double Controlled Metric Spaces with Application
Main Article Content
Abstract
We looked at and illustrated a few axioms of NDCMS (Neutrosophic double controlled metric space) in this article. As a way to generalise the Banach contraction principle in the earlier mentioned spaces, we employed NDCMS. For the purpose of reviewing what we discovered, we graphically validated several examples and supported some findings. Furthermore, we provide evidence of usage and implemented it by proving their presence with a distinctive and integrative solution.
Article Details
References
- T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
- I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal. 30 (1989), 26-37.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application Aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- S. Beniwal, N. Mani, R. Shukla, A. Sharma, Fixed Point Results for Compatible Mappings in Extended Parametric Sb -Metric Spaces, Mathematics 12 (2024), 1460. https://doi.org/10.3390/math12101460.
- F. Uddin, U. Ishtiaq, A. Hussain, K. Javed, H. Al Sulami, K. Ahmed, Neutrosophic Double Controlled Metric Spaces and Related Results with Application, Fractal Fract. 6 (2022), 318. https://doi.org/10.3390/fractalfract6060318.
- A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
- M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
- V. Gupta, N. Mani, S. Kapoor, Fixed Point Results in Neutrosophic Spaces with Consideration of CLRg Property, AIP Conf. Proc. 2735 (2023), 040021. https://doi.org/10.1063/5.0162030.
- M. Jeyaraman, V.B. Shakila, Common Fixed Point Theorems For A-Admissible Mappings In Neutrosophic Metric Spaces, Adv. Appl. Math. Sci. 21 (2022), 2069-2082.
- M. Jeyaraman, S. Sowndrarajan, Common Fixed Point Results in Neutrosophic Metric Spaces, Neutrosophic Sets Syst. 42 (2021), 208-220.
- T. Kamran, M. Samreen, Q. Ul Ain, A Generalization of B-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
- M. Kiri¸sci, N. ¸Sim¸sek, Neutrosophic Metric Spaces, Math. Sci. 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8.
- I. Kramosil, J Michalek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), 336-344.
- N. Mani, M. Pingale, R. Shukla, R. Pathak, Fixed Point Theorems in Fuzzy b-Metric Spaces Using Two Different t-Norms, Adv. Fixed Point Theory, 13 (2023), 29. https://doi.org/10.28919/afpt/8235.
- N. Saleem, H. I¸sık, S. Furqan, C. Park, Fuzzy Double Controlled Metric Spaces and Related Results, J. Intell. Fuzzy Syst. 40 (2021), 9977–9985. https://doi.org/10.3233/JIFS-202594.
- M.S. Sezen, Controlled Fuzzy Metric Spaces and Some Related Fixed Point Results, Numer. Methods Partial Differ. Equ. 37 (2021), 583–593. https://doi.org/10.1002/num.22541.
- S. Sowndrarajan, M. Jeyaraman, F. Smarandache, Fixed Point Results for Contraction Theorems in Neutrosophic Metric Spaces, Neutrosophic Sets Syst. 36 (2020), 23.
- L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.