Applications of Horadam Polynomials to a Class of Close-to-Convex Functions

Main Article Content

Waleed Al-Rawashdeh

Abstract

In this study, we introduce and investigate a family of close-to-convex functions Sscc(λ,Ψ(x)) that associated with Horadam polynomials, functions in this family are defined with respect to symmetric conjugate points. The coefficient estimates of functions belonging to this family are derived. Moreover, we obtain the classical Fekete-Szegö inequality of functions belonging to this family.

Article Details

References

  1. C. Abirami, N. Magesh, J. Yamini, Initial Bounds for Certain Classes of Bi-Univalent Functions Defined by Horadam Polynomials, Abstr. Appl. Anal. 2020 (2020), 7391058. https://doi.org/10.1155/2020/7391058.
  2. W. Al-Rawashdeh, Fekete-Szegö Functional of a Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Eur. J. Pure Appl. Math. 17 (2024), 105–115. https://doi.org/10.29020/nybg.ejpam.v17i1.5004.
  3. W. Al-Rawashdeh, A Class of Non-Bazilevic Functions Subordinate to Gegenbauer Polynomials, Int. J. Anal. Appl. 22 (2024), 29. https://doi.org/10.28924/2291-8639-22-2024-29.
  4. W. Al-Rawashdeh, Horadam Polynomials and a Class of Biunivalent Functions Defined by Ruscheweyh Operator, Int. J. Math. Math. Sci. 2023 (2023), 2573044. https://doi.org/10.1155/2023/2573044.
  5. W. Al-Rawashdeh, Applications of Gegenbauer Polynomials to a Certain Subclass of p-Valent Functions, WSEAS Trans. Math. 22 (2023), 1025–1030. https://doi.org/10.37394/23206.2023.22.111.
  6. D.A. Brannan, J.G. Clunie, Aspects of Contemporary Complex Analysis, in: Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, Academic Press, 1979.
  7. M. Ca ˘glar, H. Orhan and M. Kamali, Fekete-Szegö problem for a subclass of analytic functions associated with Chebyshev polynomials, Bol. Soc. Paran. Mat. 40 (2022), 1–6. https://doi.org/10.5269/bspm.51024.
  8. J.H. Choi, Y.C. Kim, T. Sugawa, A General Approach to the Fekete-Szegö Problem, J. Math. Soc. Japan 59 (2007), 707–727. https://doi.org/10.2969/jmsj/05930707.
  9. P. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, 1983.
  10. P. Duren, Subordination in Complex Analysis, Vol. 599, Lecture Notes in Mathematics, Springer, Berlin, pp. 22–29, 1977.
  11. R.M. El-Ashwah, D.K. Thomas, Some Subclasses of Close-to-Convex Functions, J. Ramanujan Math. Soc. 2 (1987), 86–100.
  12. A.W. Goodman, Univalent Functions, Mariner Publishing Co. Inc., 1983.
  13. A.F. Horadam, J.M. Mahon, Pell and Pell-Lucas Polynomials, Fibonacci Quart. 23 (1985), 7–20.
  14. T. Horzum, E.G. Kocer, On Some Properties of Horadam Polynomials, Int. Math. Forum, 4 (2009), 1243–1252.
  15. T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2018.
  16. M. Kamali, M. Ca ˘glar, E. Deniz, M. Turabaev, Fekete Szegö Problem for a New Subclass of Analytic Functions Satisfyingsubordinate Condition Associated With Chebyshev Polynomials, Turk. J. Math. 45 (2021), 1195–1208. https://doi.org/10.3906/mat-2101-20.
  17. F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
  18. M. Fekete, G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. London Math. Soc. s1-8(1933), 85–89.
  19. M. Lewin, On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. https://www.jstor.org/stable/2035225.
  20. N. Magesh, S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat. 29 (2017), 203–209. https://doi.org/10.1007/s13370-017-0535-3.
  21. S. Miller, P. Mocabu, Differential Subordination: Theory and Applications, CRC Press, New York, 2000.
  22. Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.
  23. E. Netanyahu, The Minimal Distance of the Image Boundary From the Origin and the Second Coefficient of a Univalent Function in |z| < 1, Arch. Rational Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/BF00247676.
  24. M. Obradovic, A Class of Univalent Functions, Hokkaido Math. J. 27 (1998), 329–335. https://doi.org/10.14492/hokmj/1351001289.
  25. F. Qi, C. Kizilates, W.S. Du, A Closed Formula for the Horadam Polynomials in Terms of a Tridiagonal Determinant, Symmetry 11 (2019), 782. https://doi.org/10.3390/sym11060782.
  26. H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, John Wiley & Sons, 1984.
  27. H.M. Srivastava, S. Altınkaya, S. Yalçın, Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials, Iran. J. Sci. Technol. Trans. Sci. 43 (2018), 1873–1879. https://doi.org/10.1007/s40995-018-0647-0.
  28. S.R. Swamy, Bi-Univalent Function Subclasses Subordinate to Horadam Polynomials, Earthline J. Math. Sci. 11 (2023), 183–198.
  29. A.K. Wanas, S. Yalçin, Coefficient Estimates and Fekete-Szegö Inequality for Family of Bi-Univalent Functions Defined by the Second Kind Chebyshev Polynomial, Int. J. Open Probl. Comp. Math. 13 (2020), 25–33.