Wardowski Contraction on Controlled S-Metric Type Spaces with Fixed Point Results

Main Article Content

Fatima M. Azmi

Abstract

This article presents the concept of a triple controlled S-metric type space, characterized by three control functions: β, µ, and γ. This extends the idea of controlled S-metric type spaces. We explore several properties and provide illustrative examples. Furthermore, we introduce αs-admissible mappings and enhance Wardowski’s contraction principle by introducing (αs-F)-contractive mappings specifically designed for triple controlled S-metric type spaces. The article establishes the existence and uniqueness of fixed points within a complete triple controlled S-metric type space. Finally, we apply our main theorem to demonstrate the determination of a unique solution for an mth degree polynomial.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  2. A. Bakhtin, The Contractive Mapping Principle in Almost Metric Spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
  3. T. Kamran, M. Samreen, Q. UL Ain, A Generalization of b-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
  4. N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics 6 (2018), 194. https://doi.org/10.3390/math6100194.
  5. T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
  6. F.M. Azmi, New fixed point results in double controlled metric type spaces with applications, AIMS Math. 8 (2023), 1592–1609. https://doi.org/10.3934/math.2023080.
  7. Z.S. Tasneem, G. Kalpana, T. Abdeljawad, A Different Approach to Fixed Point Theorems on Triple Controlled Metric Type Spaces with a Numerical Experiment, Dyn. Syst. Appl. 30 (2021), 111–130.
  8. K. Gopalan, S.T. Zubair, T. Abdeljawad, N. Mlaiki, New Fixed Point Theorem on Triple Controlled Metric Type Spaces with Applications to Volterra-Fredholm Integro-Dynamic Equations, Axioms 11 (2022), 19. https://doi.org/10.3390/axioms11010019.
  9. F.M. Azmi, New Contractive Mappings and Solutions to Boundary-Value Problems in Triple Controlled Metric Type Spaces, Symmetry 14 (2022), 2270. https://doi.org/10.3390/sym14112270.
  10. S. Sedghi, N. Shobe, A. Aliouche, A Generalization of Fixed Point Theorems in S-Metric Spaces, Mat. Vesnik 64 (2012), 258–266. http://eudml.org/doc/253803.
  11. N. Souayah, N. Mlaiki, A Fixed Point Theorem in Sb -Metric Spaces, J. Math. Comp. Sci. 16 (2016), 131–139.
  12. N. Mlaiki, Extended Sb -Metric Spaces, J. Math. Anal. 9 (2018), 124–135.
  13. R. Qaralleh, A. Tallafha, W. Shatanawi, Some Fixed-Point Results in Extended S-Metric Space of Type (α, β), Symmetry 15 (2023), 1790. https://doi.org/10.3390/sym15091790.
  14. N. Ekiz Yazici, O. Ege, N. Mlaiki, A. Mukheimer, Controlled S-Metric-Type Spaces and Applications to Fractional Integrals, Symmetry 15 (2023), 1100. https://doi.org/10.3390/sym15051100.
  15. D. Wardowski, Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94.
  16. O. Acar, I. Altun, Multivalued F-Contractive Mappings With a Graph and Some Fixed Point Results, Publ. Math. Debrecen 88 (2016), 305–317. https://doi.org/10.5486/pmd.2016.7308.
  17. M.U. Ali, T. Kamran, Multivalued F-Contractions and Related Fixed Point Theorems With an Application, Filomat 30 (2016), 3779–3793. https://www.jstor.org/stable/24899466.
  18. E. Karapınar, A. Fulga, R.P. Agarwal, A Survey: F-Contractions With Related Fixed Point Results, J. Fixed Point Theory Appl. 22 (2020), 69. https://doi.org/10.1007/s11784-020-00803-7.
  19. R.P. Agarwal, Ü. Aksoy, E. Karapınar, ˙I.M. Erhan, F-Contraction Mappings on Metric-Like Spaces in Connection With Integral Equations on Time Scales, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020), 147. https://doi.org/10.1007/s13398-020-00877-5.
  20. B. Samet, C. Vetro, P. Vetro, Fixed Points Theorems for α − ψ-Contractive Type Mappings, Nonlinear Anal.: Theory Meth. Appl. 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014.
  21. N. Priyobarta, Y. Rohen, S. Thounaojam, S. Radenovic, Some Remarks on α-Admissibility in S-Metric Spaces, J. Ineq. Appl. 2022 (2022), 34. https://doi.org/10.1186/s13660-022-02767-3.
  22. D. Gopal, M. Abbas, D.K. Patel, C. Vetro, Fixed Points of α-Type F-Contractive Mappings With an Application to Nonlinear Fractional Differential Equation, Acta Math. Sci. 36 (2016), 957–970. https://doi.org/10.1016/s0252-9602(16)30052-2.
  23. A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim, W. Shatanawi, On Common Fixed Points for α − F-Contractions and Applications, J. Nonlinear Sci. Appl. 9 (2016), 3445–3458.
  24. J. Ahmad, A.E. Al-Mazrooei, H. Aydi, M. De la Sen, On Fixed Point Results in Controlled Metric Spaces, J. Function Spaces 2020 (2020), 2108167. https://doi.org/10.1155/2020/2108167.
  25. H. Lakzian, D. Gopal, W. Sintunavarat, New Fixed Point Results for Mappings of Contractive Type With an Application to Nonlinear Fractional Differential Equations, J. Fixed Point Theory Appl. 18 (2015), 251–266. https://doi.org/10.1007/s11784-015-0275-7.
  26. E. Karapinar, A. Petru¸sel, G. Petru¸sel, On Admissible Hybrid Geraghty Contractions, Carpathian J. Math. 36 (2020), 433–442. https://www.jstor.org/stable/26932585.
  27. H. Aydi, E. Karapinar, H. Yazidi, Modified F-Contractions via α-Admissible Mappings and Application to Integral Equations, Filomat, 31 (2017), 1141–1148. https://www.jstor.org/stable/24902211.
  28. K.M. Devi, Y. Rohen, K.A. Singh, Fixed Points of Modified F-Contractions in S-Metric Spaces, J. Math. Comp. Sci. 12 (2022), 197. https://doi.org/10.28919/jmcs/7716.