Wardowski Contraction on Controlled S-Metric Type Spaces with Fixed Point Results
Main Article Content
Abstract
This article presents the concept of a triple controlled S-metric type space, characterized by three control functions: β, µ, and γ. This extends the idea of controlled S-metric type spaces. We explore several properties and provide illustrative examples. Furthermore, we introduce αs-admissible mappings and enhance Wardowski’s contraction principle by introducing (αs-F)-contractive mappings specifically designed for triple controlled S-metric type spaces. The article establishes the existence and uniqueness of fixed points within a complete triple controlled S-metric type space. Finally, we apply our main theorem to demonstrate the determination of a unique solution for an mth degree polynomial.
Article Details
References
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- A. Bakhtin, The Contractive Mapping Principle in Almost Metric Spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
- T. Kamran, M. Samreen, Q. UL Ain, A Generalization of b-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
- N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics 6 (2018), 194. https://doi.org/10.3390/math6100194.
- T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
- F.M. Azmi, New fixed point results in double controlled metric type spaces with applications, AIMS Math. 8 (2023), 1592–1609. https://doi.org/10.3934/math.2023080.
- Z.S. Tasneem, G. Kalpana, T. Abdeljawad, A Different Approach to Fixed Point Theorems on Triple Controlled Metric Type Spaces with a Numerical Experiment, Dyn. Syst. Appl. 30 (2021), 111–130.
- K. Gopalan, S.T. Zubair, T. Abdeljawad, N. Mlaiki, New Fixed Point Theorem on Triple Controlled Metric Type Spaces with Applications to Volterra-Fredholm Integro-Dynamic Equations, Axioms 11 (2022), 19. https://doi.org/10.3390/axioms11010019.
- F.M. Azmi, New Contractive Mappings and Solutions to Boundary-Value Problems in Triple Controlled Metric Type Spaces, Symmetry 14 (2022), 2270. https://doi.org/10.3390/sym14112270.
- S. Sedghi, N. Shobe, A. Aliouche, A Generalization of Fixed Point Theorems in S-Metric Spaces, Mat. Vesnik 64 (2012), 258–266. http://eudml.org/doc/253803.
- N. Souayah, N. Mlaiki, A Fixed Point Theorem in Sb -Metric Spaces, J. Math. Comp. Sci. 16 (2016), 131–139.
- N. Mlaiki, Extended Sb -Metric Spaces, J. Math. Anal. 9 (2018), 124–135.
- R. Qaralleh, A. Tallafha, W. Shatanawi, Some Fixed-Point Results in Extended S-Metric Space of Type (α, β), Symmetry 15 (2023), 1790. https://doi.org/10.3390/sym15091790.
- N. Ekiz Yazici, O. Ege, N. Mlaiki, A. Mukheimer, Controlled S-Metric-Type Spaces and Applications to Fractional Integrals, Symmetry 15 (2023), 1100. https://doi.org/10.3390/sym15051100.
- D. Wardowski, Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94.
- O. Acar, I. Altun, Multivalued F-Contractive Mappings With a Graph and Some Fixed Point Results, Publ. Math. Debrecen 88 (2016), 305–317. https://doi.org/10.5486/pmd.2016.7308.
- M.U. Ali, T. Kamran, Multivalued F-Contractions and Related Fixed Point Theorems With an Application, Filomat 30 (2016), 3779–3793. https://www.jstor.org/stable/24899466.
- E. Karapınar, A. Fulga, R.P. Agarwal, A Survey: F-Contractions With Related Fixed Point Results, J. Fixed Point Theory Appl. 22 (2020), 69. https://doi.org/10.1007/s11784-020-00803-7.
- R.P. Agarwal, Ü. Aksoy, E. Karapınar, ˙I.M. Erhan, F-Contraction Mappings on Metric-Like Spaces in Connection With Integral Equations on Time Scales, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020), 147. https://doi.org/10.1007/s13398-020-00877-5.
- B. Samet, C. Vetro, P. Vetro, Fixed Points Theorems for α − ψ-Contractive Type Mappings, Nonlinear Anal.: Theory Meth. Appl. 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014.
- N. Priyobarta, Y. Rohen, S. Thounaojam, S. Radenovic, Some Remarks on α-Admissibility in S-Metric Spaces, J. Ineq. Appl. 2022 (2022), 34. https://doi.org/10.1186/s13660-022-02767-3.
- D. Gopal, M. Abbas, D.K. Patel, C. Vetro, Fixed Points of α-Type F-Contractive Mappings With an Application to Nonlinear Fractional Differential Equation, Acta Math. Sci. 36 (2016), 957–970. https://doi.org/10.1016/s0252-9602(16)30052-2.
- A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim, W. Shatanawi, On Common Fixed Points for α − F-Contractions and Applications, J. Nonlinear Sci. Appl. 9 (2016), 3445–3458.
- J. Ahmad, A.E. Al-Mazrooei, H. Aydi, M. De la Sen, On Fixed Point Results in Controlled Metric Spaces, J. Function Spaces 2020 (2020), 2108167. https://doi.org/10.1155/2020/2108167.
- H. Lakzian, D. Gopal, W. Sintunavarat, New Fixed Point Results for Mappings of Contractive Type With an Application to Nonlinear Fractional Differential Equations, J. Fixed Point Theory Appl. 18 (2015), 251–266. https://doi.org/10.1007/s11784-015-0275-7.
- E. Karapinar, A. Petru¸sel, G. Petru¸sel, On Admissible Hybrid Geraghty Contractions, Carpathian J. Math. 36 (2020), 433–442. https://www.jstor.org/stable/26932585.
- H. Aydi, E. Karapinar, H. Yazidi, Modified F-Contractions via α-Admissible Mappings and Application to Integral Equations, Filomat, 31 (2017), 1141–1148. https://www.jstor.org/stable/24902211.
- K.M. Devi, Y. Rohen, K.A. Singh, Fixed Points of Modified F-Contractions in S-Metric Spaces, J. Math. Comp. Sci. 12 (2022), 197. https://doi.org/10.28919/jmcs/7716.