Behavioral Intentions in Cashless: The Role of Green Finance Perception in the Vietnamese Market

Main Article Content

Ninh Van Nguyen, Thi Lan Phuong Dang, Nguyen Thanh Phuong

Abstract

The present research investigates consumers' behavioral intention towards cashless modes of payment in Vietnam with mediating factors such as green finance perception. Based on the theory of planned behavior and perceived benefits the study seeks to compare functional, economic, psychological and social benefits as factors influencing attitude, self-control beliefs and subjective norms, towards acceptance of cashless systems. The present study engaged a survey of 355 respondents and offered a measurement model and analysis results of the relation between the variables following the partial least squares-structural equation modeling (PLS-SEM). The findings indicate that attitude and behavioral control are the predictors of intention with significant influence, while green finance moderates the relationship between attitude and subjective norms to intention, but not behavioral control. Such findings suggest that publicizing the utilitarian and environmental advantages of cashless payment should be pursued. Finally, the study recommends that there should be specific marketing promotion to ensure that more people embrace green finance with the investigations being extended across people of different categories to increase efficiency.

Article Details

References

  1. S. Henningsson, J. Hedman, Transformation of Digital Ecosystems: The Case of Digital Payments, in: Linawati, M.S. Mahendra, E.J. Neuhold, A.M. Tjoa, I. You (Eds.), Information and Communication Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014: pp. 46–55. https://doi.org/10.1007/978-3-642-55032-4_5.
  2. H. Ha, Cashless payment on the rise in Viet Nam, Gov. News, 2024. https://en.baochinhphu.vn/cashless-payment-on-the-rise-in-viet-nam-111240309092453227.htm
  3. D.V. Dinh, The Factors Impact on the Cashless Payment Behavior: The IPA Model Approach, J. Sci. Technol. Policy Manag. (2024). https://doi.org/10.1108/JSTPM-03-2023-0031.
  4. M.T. Nguyen, T. Alang, When Do Shoppers Prefer Using QR Codes? Empirical Evidence from Vietnam, Future Bus. J. 10 (2024), 105. https://doi.org/10.1186/s43093-024-00391-9.
  5. M.R. Hossain, A. Rao, G.D. Sharma, D. Dev, A. Kharbanda, Empowering Energy Transition: Green Innovation, Digital Finance, and the Path to Sustainable Prosperity through Green Finance Initiatives, Energy Econ. 136 (2024), 107736. https://doi.org/10.1016/j.eneco.2024.107736.
  6. H. Park, J.D. Kim, Transition towards Green Banking: Role of Financial Regulators and Financial Institutions, Asian J. Sustain. Soc. Responsib. 5 (2020), 5. https://doi.org/10.1186/s41180-020-00034-3.
  7. N.K. Jain, K. Kaushik, A. Sharma, What Drives Customers toward Proximity Payment Services? An Integrated Theory of Planned Behavior Perspective, Int. J. Consum. Stud. 47 (2023), 1095–1111. https://doi.org/10.1111/ijcs.12890.
  8. D.M. Ashrafi, M. Akhter, The Green Fintech Paradox: Understanding the Dynamics of Green Brand Positioning and User Decision-Making in the Digital Financial Landscape, J. Model. Manag. (2024). https://doi.org/10.1108/JM2-12-2023-0294.
  9. H. Zaidan, F. Shishan, M. Al-Hasan, H. Al-Mawali, O. Mowafi, S.E. Dahiyat, Cash or Cash-Less? Exploring the Determinants of Continuous Intention to Use e-Wallets: The Moderating Role of Environmental Knowledge, Compet. Rev. (2024). https://doi.org/10.1108/CR-11-2023-0279.
  10. I. Ajzen, The Theory of Planned Behavior, Organ. Behav. Hum. Decis. Process. 50 (1991), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T.
  11. H. Hilale, A. Chakor, Do Users’ pro-Environmental Personal Norms Hold Significance in Electronic Payment Adoption Context?, J. Financ. Serv. Mark. 29 (2024), 1589–1608. https://doi.org/10.1057/s41264-024-00286-4.
  12. P. Garg, B. Gupta, A.K. Chauhan, U. Sivarajah, S. Gupta, S. Modgil, Measuring the Perceived Benefits of Implementing Blockchain Technology in the Banking Sector, Technol. Forecast. Soc. Change 163 (2021), 120407. https://doi.org/10.1016/j.techfore.2020.120407.
  13. M. Candi, K.B. Kahn, Functional, Emotional, and Social Benefits of New B2B Services, Ind. Mark. Manag. 57 (2016), 177–184. https://doi.org/10.1016/j.indmarman.2016.02.002.
  14. Y. Leung, Perceived Benefits, in: M.D. Gellman, J.R. Turner (Eds.), Encyclopedia of Behavioral Medicine, Springer New York, 2013: pp. 1450–1451. https://doi.org/10.1007/978-1-4419-1005-9_1165.
  15. Y.-H. Cheng, T.-Y. Huang, High Speed Rail Passengers’ Mobile Ticketing Adoption, Transp. Res. Part C Emerg. Technol. 30 (2013), 143–160. https://doi.org/10.1016/j.trc.2013.02.001.
  16. J.C. Sweeney, D.A. Webb, How Functional, Psychological, and Social Relationship Benefits Influence Individual and Firm Commitment to the Relationship, J. Bus. Ind. Mark. 22 (2007), 474–488. https://doi.org/10.1108/08858620710828854.
  17. K.S. Namahoot, V. Jantasri, Integration of UTAUT Model in Thailand Cashless Payment System Adoption: The Mediating Role of Perceived Risk and Trust, J. Sci. Technol. Policy Manag. 14 (2023), 634–658. https://doi.org/10.1108/JSTPM-07-2020-0102.
  18. U. Akturan, N. Tezcan, Mobile Banking Adoption of the Youth Market: Perceptions and Intentions, Mark. Intell. Plan. 30 (2012), 444–459. https://doi.org/10.1108/02634501211231928.
  19. J. Park, J. Ahn, T. Thavisay, T. Ren, Examining the Role of Anxiety and Social Influence in Multi-Benefits of Mobile Payment Service, J. Retail. Consum. Serv. 47 (2019), 140–149. https://doi.org/10.1016/j.jretconser.2018.11.015.
  20. A. George, P. Sunny, Developing a Research Model for Mobile Wallet Adoption and Usage, IIM Kozhikode Soc. Manag. Rev. 10 (2021), 82–98. https://doi.org/10.1177/2277975220965354.
  21. R. Gupta, S. Ranjan, A. Gupta, Consumer’s Perceived Trust and Subjective Norms as Antecedents of Mobile Wallets Adoption and Continuance Intention: A Technology Acceptance Approach, in: M. Al-Emran, K. Shaalan (Eds.), Recent Advances in Technology Acceptance Models and Theories, Springer, Cham, 2021: pp. 211–224. https://doi.org/10.1007/978-3-030-64987-6_13.
  22. N.V. Nguyen, T.A. Nguyen, Intentions to Adopt Contactless Travel in the Post-Pandemic Era: Adapting to a New Normal, Int. J. Anal. Appl. 22 (2024), 101. https://doi.org/10.28924/2291-8639-22-2024-101.
  23. M.R.I. Bhuiyan, Most.S. Akter, S. Islam, How Does Digital Payment Transform Society as a Cashless Society? An Empirical Study in the Developing Economy, J. Sci. Technol. Policy Manag. (2024). https://doi.org/10.1108/JSTPM-10-2023-0170.
  24. M.Y.M. Al-Sabaawi, A.A. Alshaher, M.A. Alsalem, User Trends of Electronic Payment Systems Adoption in Developing Countries: An Empirical Analysis, J. Sci. Technol. Policy Manag. 14 (2023), 246–270. https://doi.org/10.1108/JSTPM-11-2020-0162.
  25. C. Neves, T. Oliveira, F. De Oliveira Santini, W.J. Ladeira, A Digital Payment Generalisation Model: A Meta-Analytic Structural Equation Modelling (MASEM) Research, Electron. Commer. Res. (2024). https://doi.org/10.1007/s10660-023-09795-1.
  26. M. Ajouz, F. Abuamria, J. Hammad, Factors Influencing Mobile Payment Adoption and Its Role in Promoting Financial Inclusion: An Integrated Reflective Model with Theory of Planned Behavior, in: B. Alareeni, A. Hamdan (Eds.), Innovation of Businesses, and Digitalization during Covid-19 Pandemic, Springer, Cham, 2023: pp. 563–581. https://doi.org/10.1007/978-3-031-08090-6_36.
  27. M.D. Dzandu, C. Hanu, H. Amegbe, Gamification of Mobile Money Payment for Generating Customer Value in Emerging Economies: The Social Impact Theory Perspective, Technol. Forecast. Soc. Change 185 (2022), 122049. https://doi.org/10.1016/j.techfore.2022.122049.
  28. M. Al-Okaily, A. Lutfi, A. Alsaad, A. Taamneh, A. Alsyouf, The Determinants of Digital Payment Systems’ Acceptance under Cultural Orientation Differences: The Case of Uncertainty Avoidance, Technol. Soc. 63 (2020), 101367. https://doi.org/10.1016/j.techsoc.2020.101367.
  29. H.I. Duh, F. Akasreku, Socio-Demographic, Consumer and Product Related Drivers of Mobile Payment Use and Reuse: Four Theories’ Explanations, Int. J. Technol. Market. 18 (2024), 137–161. https://doi.org/10.1504/IJTMKT.2024.137670.
  30. K. Kajol, R. Singh, J. Paul, Adoption of Digital Financial Transactions: A Review of Literature and Future Research Agenda, Technol. Forecast. Soc. Change 184 (2022), 121991. https://doi.org/10.1016/j.techfore.2022.121991.
  31. E.S. Aboubaker, E.M. Mohamed, The Move Towards Cashless Society: How to Improve Consumers’ Use of Bank Cards in Retail Stores?, Stud. Bus. Econ. 17 (2022), 24–40. https://doi.org/10.2478/sbe-2022-0002.
  32. W.-L. Shiau, C. Liu, M. Zhou, Y. Yuan, Insights into Customers’ Psychological Mechanism in Facial Recognition Payment in Offline Contactless Services: Integrating Belief–Attitude–Intention and TOE–I Frameworks, Internet Res. 33 (2023), 344–387. https://doi.org/10.1108/INTR-08-2021-0629.
  33. Y.A. Albastaki, Toward a Cashless Society: Assessing the Acceptance of Bahrain BenefitPay Using TAM and SEM, Compet. Rev. 34 (2024), 193–207. https://doi.org/10.1108/CR-12-2022-0184.
  34. R. Manrai, U. Goel, P.D. Yadav, Factors Affecting Adoption of Digital Payments by Semi-Rural Indian Women: Extension of UTAUT-2 with Self-Determination Theory and Perceived Credibility, Aslib J. Inf. Manag. 73 (2021), 814–838. https://doi.org/10.1108/AJIM-12-2020-0396.
  35. R. Yeoh, H.K. Kim, H. Kang, Y.A. Lin, A.D. Ho, K.F. Ho, What Determines Intentions to Use Mobile Fitness Apps? The Independent and Joint Influence of Social Norms, Int. J. Hum.-Comput. Interact. 40 (2024), 121–130. https://doi.org/10.1080/10447318.2022.2111040.
  36. F. Liébana-Cabanillas, Z. Kalinic, F. Muñoz-Leiva, E. Higueras-Castillo, Biometric M-Payment Systems: A Multi-Analytical Approach to Determining Use Intention, Inf. Manag. 61 (2024), 103907. https://doi.org/10.1016/j.im.2023.103907.
  37. R. Agrawal, S. Agrawal, A. Samadhiya, A. Kumar, S. Luthra, V. Jain, Adoption of Green Finance and Green Innovation for Achieving Circularity: An Exploratory Review and Future Directions, Geosci. Front. 15 (2024), 101669. https://doi.org/10.1016/j.gsf.2023.101669.
  38. Y. Wang, Z. Zhao, M. Shi, J. Liu, Z. Tan, Public Environmental Concern, Government Environmental Regulation and Urban Carbon Emission Reduction—Analyzing the Regulating Role of Green Finance and Industrial Agglomeration, Sci. Total Environ. 924 (2024), 171549. https://doi.org/10.1016/j.scitotenv.2024.171549.
  39. M. Allahham, A.-A.A. Sharabati, L. Almazaydeh, Q.M. Shalatony, R.H. Frangieh, G.M. Al-Anati, The Impact of Fintech-Based Eco-Friendly Incentives in Improving Sustainable Environmental Performance: A Mediating-Moderating Model, Int. J. Data Netw. Sci. 8 (2024), 415–430. https://doi.org/10.5267/j.ijdns.2023.9.013.
  40. J.F.H. Jr., L.M. Matthews, R.L. Matthews, M. Sarstedt, PLS-SEM or CB-SEM: Updated Guidelines on Which Method to Use, Int. J. Multivar. Data Anal. 1 (2017), 107. https://doi.org/10.1504/IJMDA.2017.087624.
  41. R. Wagner, M.S. Grimm, Empirical Validation of the 10-Times Rule for SEM, in: L. Radomir, R. Ciornea, H. Wang, Y. Liu, C.M. Ringle, M. Sarstedt (Eds.), State of the Art in Partial Least Squares Structural Equation Modeling (PLS-SEM), Springer International Publishing, Cham, 2023: pp. 3–7. https://doi.org/10.1007/978-3-031-34589-0_1.
  42. J.F. Hair, J.J. Risher, M. Sarstedt, C.M. Ringle, When to Use and How to Report the Results of PLS-SEM, Eur. Bus. Rev. 31 (2019), 2–24. https://doi.org/10.1108/EBR-11-2018-0203.
  43. J.M. Becker, J.-H. Cheah, R. Gholamzade, C.M. Ringle, M. Sarstedt, PLS-SEM’s Most Wanted Guidance, Int. J. Contemp. Hosp. Manag. 35 (2023), 321–346. https://doi.org/10.1108/IJCHM-04-2022-0474.
  44. A. Jaiswal, Google Form, in: Open Electronic Data Capture Tools for Medical and Biomedical Research and Medical Allied Professionals, Elsevier, 2024: pp. 331–378. https://doi.org/10.1016/B978-0-443-15665-6.00008-7.
  45. R. Garg, Z. Rahman, M.N. Qureshi, Measuring Customer Experience in Banks: Scale Development and Validation, J. Model. Manag. 9 (2014), 87–117. https://doi.org/10.1108/JM2-07-2012-0023.
  46. S. Streukens, S. Leroi-Werelds, Bootstrapping and PLS-SEM: A Step-by-Step Guide to Get More out of Your Bootstrap Results, Eur. Manag. J. 34 (2016), 618–632. https://doi.org/10.1016/j.emj.2016.06.003.
  47. K. Mireku, F. Appiah, J.A. Agana, Is There a Link between Financial Literacy and Financial Behaviour?, Cogent Econ. Finance 11 (2023), 2188712. https://doi.org/10.1080/23322039.2023.2188712.
  48. J.C. Nunnally, An Overview of Psychological Measurement, in: B.B. Wolman (Ed.), Clinical Diagnosis of Mental Disorders, Springer, Boston, MA, 1978: pp. 97–146. https://doi.org/10.1007/978-1-4684-2490-4_4.
  49. C.M. Ringle, M. Sarstedt, N. Sinkovics, R.R. Sinkovics, A Perspective on Using Partial Least Squares Structural Equation Modelling in Data Articles, Data Brief 48 (2023), 109074. https://doi.org/10.1016/j.dib.2023.109074.
  50. C. Fornell, D.F. Larcker, Evaluating Structural Equation Models with Unobservable Variables and Measurement Error, J. Mark. Res. 18 (1981), 39–50. https://doi.org/10.1177/002224378101800104.
  51. J.C. Ho, C.G. Wu, C.S. Lee, T.T.T. Pham, Factors Affecting the Behavioral Intention to Adopt Mobile Banking: An International Comparison, Technol. Soc. 63 (2020), 101360. https://doi.org/10.1016/j.techsoc.2020.101360.
  52. P.M. Nardi, Doing Survey Research: A Guide to Quantitative Methods, Routledge, 2018. https://doi.org/10.4324/9781315172231.
  53. I. Hidayat-ur-Rehman, M.N. Hossain, The Impacts of Fintech Adoption, Green Finance and Competitiveness on Banks’ Sustainable Performance: Digital Transformation as Moderator, Asia-Pac. J. Bus. Admin. (2024). https://doi.org/10.1108/APJBA-10-2023-0497.
  54. P.-S. Ling, C.H. Chin, J. Yi, W.P.M. Wong, Green Consumption Behaviour among Generation Z College Students in China: The Moderating Role of Government Support, Young Cons. 25 (2024), 507–527. https://doi.org/10.1108/YC-01-2022-1443.