Decision-Making on a Common Equilibrium Marketing Fixed-Point Theorem for Two and Three Meir-Keeler Condensing Supply Mappings in Banach Space
Main Article Content
Abstract
This paper is aimed to prove common equilibrium marketing fixed-point theorem for two and three mappings in Banach space by the use of measure of non-compactness on Meir Keeler condensing supply operators. We attempt to show the existence of common equilibrium marketing fixed-point theorem for two and three commuting supply maps in this paper.
Article Details
References
- R.P. Agarwal, Certain Fractional q-Integrals and q -Derivatives, Math. Proc. Cambridge Phil. Soc. 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060.
- R.P. Agarwal, M. Meehan, D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543005.
- A. Aghajani, M. Mursaleen, A. Shole Haghighi, Fixed Point Theorems for Meir-Keeler Condensing Operators via Measure of Noncompactness, Acta Math. Sci. 35 (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5.
- A. Aghajani, R. Allahyari, M.Mursaleen, A Generalization of Darbo’s Theorem with Application to the Solvability of Systems of Integral Equations, J. Comput. Appl. Math. 260 (2014), 68–77. https://doi.org/10.1016/j.cam.2013.09.039.
- A. Aghajani, J. Banas, S. Sabzali, Some Generalization of Darbo’s Fixed Point Theorem and Applications, Bull. Math. Soc. Simon Sterin 20 (2013), 345–358.
- R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhäuser Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7.
- A. Alotaibi, M. Mursaleen, S.A. Mohiuddine, Application of Measures of Noncompactness to Infinite System of Linear Equations in Sequence Spaces, Bull. Iran. Math. Soc. 41 (2015), 519–527.
- A.V. Baboli, M.B. Ghaemi, A Common Fixed Point Theorem via Measure of Noncompactness, Int. J. Nonlinear Anal. Appl. 12 (2021), 293–296.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- J. Banas, On Measures of Noncompactness in Banach Spaces, Comment. Math. Univ. Carol. 21 (1980), 131–143. https://eudml.org/doc/17021.
- J. Banas, K. Goebel, Measure of Non Compactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Marcel Dekker, New York, 1980.
- J. Banas, M. Lecko, Fixed Points of the Product of Operators in Banach Algebra, Panamar. Math. J. 12 (2002), 101–109.
- J. Banas, M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, 2014. https://doi.org/10.1007/978-81-322-1886-9.
- G. Darbo, Punti Uniti in Trasformazioni a Codominio Non Compatto, Rend. Semin. Mat. Univ. Padova 24 (1955), 84–92. http://www.numdam.org/item?id=RSMUP_1955__24__84_0.
- K. Kuratowski, Sur les Espaces Complets, Fund. Math. 15 (1930), 301–309. https://eudml.org/doc/212357.
- M. Mursaleen, S.A. Mohiuddine, Applications of Measures of Noncompactness to the Infinite System of Differential Equations in lp Spaces, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 2111–2115. https://doi.org/10.1016/j.na.2011.10.011.