Solution of Prey–Predator System by ADM

Main Article Content

A. A. Moniem, J. Satouri

Abstract

A prey-predator system with an abundance of nutrients is considered. Utilizing Adomian decomposition method to numerate and approximate the solution of that governing system. Providing many examples to obtain some numerical simulation solutions and plot the results for the prey and predator populations versus time.

Article Details

References

  1. P.J. Wangersky, W.J. Cunningham, Time Lag in Prey-Predator Population Models, Ecology 38 (1957), 136–139. https://doi.org/10.2307/1932137.
  2. Y. Kuang, H.I. Freedman, Uniqueness of Limit Cycles in Gause-Type Models of Predator-Prey Systems, Math. Biosci. 88 (1988), 67–84. https://doi.org/10.1016/0025-5564(88)90049-1.
  3. R. Arditi, L.R. Ginzburg, Coupling in Predator-Prey Dynamics: Ratio-Dependence, J. Theor. Biol. 139 (1989), 311–326. https://doi.org/10.1016/S0022-5193(89)80211-5.
  4. Y. Kuang, E. Beretta, Global Qualitative Analysis of a Ratio-Dependent Predator-Prey System, J. Math. Biol. 36 (1998), 389–406. https://doi.org/10.1007/s002850050105.
  5. D. Xiao, S. Ruan, Global Dynamics of a Ratio-Dependent Predator-Prey System, J. Math. Biol. 43 (2001), 268–290. https://doi.org/10.1007/s002850100097.
  6. R.S. Cantrell, C. Cosner, On the Dynamics of Predator–Prey Models with the Beddington–DeAngelis Functional Response, J. Math. Anal. Appl. 257 (2001), 206–222. https://doi.org/10.1006/jmaa.2000.7343.
  7. M. Sen, M. Banerjee, A. Morozov, Bifurcation Analysis of a Ratio-Dependent Prey–Predator Model with the Allee Effect, Ecol. Complex. 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002.
  8. A. Erbach, F. Lutscher, G. Seo, Bistability and Limit Cycles in Generalist Predator–Prey Dynamics, Ecol. Complex. 14 (2013), 48–55. https://doi.org/10.1016/j.ecocom.2013.02.005.
  9. L. Pˇribylová, L. Berec, Predator Interference and Stability of Predator–Prey Dynamics, J. Math. Biol. 71 (2015), 301–323. https://doi.org/10.1007/s00285-014-0820-9.
  10. A.A. Moniem, Analysis of Prey-Predator Model in Chemostat When the Predator Produces Inhibitor, J. Appl. Comput. Math. 06 (2017), 4. https://doi.org/10.4172/2168-9679.1000367.
  11. K.P. Hadeler, Topics in Mathematical Biology, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-65621-2.
  12. J. Roy, M. Banerjee, Global Stability of a Predator–Prey Model with Generalist Predator, Appl. Math. Lett. 142 (2023), 108659. https://doi.org/10.1016/j.aml.2023.108659.
  13. J. Biazar, E. Babolian, G. Kember, A. Nouri, R. Islam, An Alternate Algorithm for Computing Adomian Polynomials in Special Cases, Appl. Math. Comput. 138 (2003), 523–529. https://doi.org/10.1016/S0096-3003(02)00174-1.
  14. J. Biazar, M. Tango, E. Babolian, R. Islam, Solution of the Kinetic Modeling of Lactic Acid Fermentation Using Adomian Decomposition Method, Appl. Math. Comput. 144 (2003), 433–439. https://doi.org/10.1016/S0096-3003(02)00418-6.
  15. J. Biazar, E. Babolian, R. Islam, Solution of the System of Ordinary Differential Equations by Adomian Decomposition Method, Appl. Math. Comput. 147 (2004), 713–719. https://doi.org/10.1016/S0096-3003(02)00806-8.
  16. V. Daftardar-Gejji, H. Jafari, Adomian Decomposition: A Tool for Solving a System of Fractional Differential Equations, J. Math. Anal. Appl. 301 (2005), 508–518. https://doi.org/10.1016/j.jmaa.2004.07.039.