A Quantum-Corrected Chaotic System for Strengthening Schnorr and Elgamal Signatures to Optimize Key Generation and Performance
Main Article Content
Abstract
This paper aims to improve the performance of Schnorr and Elgamal schemes using the random property of the chaotic maps. After analyzing different chaotic map types, this paper generates a new 1D chaotic system based on sin and logistic maps. After that, we derived a new map with quantum corrections by coupling a kicked quantum system with a harmonic oscillator bath. As the dissipation parameter increases, we observe a period-doubling progression towards classical behavior, along with other intriguing characteristics at intermediate parameter values. Then, this new chaotic system is applied to the Schnorr and Elgamal schemes. Extensive randomness tests were conducted, and the algorithm demonstrated exceptional performance. Following rigorous testing and analysis, the algorithm exhibited impressive signing and verification times of approximately 0.0000799212 (s) and 0.0000100223 (s) for the Schnorr scheme, and 0.000029932 (s) and 0.0000399298 (s) for the Elgamal scheme, respectively. These times are notably lower compared to other proposed algorithms. The private key space was expanded to from , further strengthening security. Testing with 100,000 messages of varying lengths confirmed the algorithm's robust performance, making it a viable option for contemporary cryptosystems used in multimedia data exchange.
Article Details
References
- J. Vora, P. DevMurari, S. Tanwar, S. Tyagi, N. Kumar, M.S. Obaidat, Blind Signatures Based Secured E-Healthcare System, in: 2018 International Conference on Computer, Information and Telecommunication Systems (CITS), IEEE, Alsace, Colmar, France, 2018: pp. 1–5. https://doi.org/10.1109/CITS.2018.8440186.
- H.A.M.A. Basha, A.S.S. Mohra, T.O.M. Diab, W.I.E. Sobky, Efficient Image Encryption Based on New Substitution Box Using DNA Coding and Bent Function, IEEE Access 10 (2022), 66409–66429. https://doi.org/10.1109/ACCESS.2022.3183990.
- W. Alsobky, H. Saeed, A.N. Elwakeil, Different Types of Attacks on Block Ciphers, Int. J. Recent Technol. Eng. 9 (2020), 28-31.
- W. Fang, W. Chen, W. Zhang, J. Pei, W. Gao, G. Wang, Digital Signature Scheme for Information Non-Repudiation in Blockchain: A State of the Art Review, EURASIP J. Wirel. Commun. Netw. 2020 (2020), 56. https://doi.org/10.1186/s13638-020-01665-w.
- A.K. Aboul-Seoud, A.K. Mahmoud, A. Hafez, et al. Minimum Variance Variable Constrain DOA Algorithm, in: PIERS Proceedings, Guangzhou, China, 2014.
- L.W. Cong, Z. He, Blockchain Disruption and Smart Contracts, Rev. Financial Stud. 32 (2019), 1754–1797. https://doi.org/10.1093/rfs/hhz007.
- L. Ante, Smart Contracts on the Blockchain – A Bibliometric Analysis and Review, Telemat. Inform. 57 (2021), 101519. https://doi.org/10.1016/j.tele.2020.101519.
- N.A. Alwan, S.J. Obaiys, N.F.B.M. Noor, N.M.G. Al-Saidi, Y. Karaca, Color Image Encryption Through Multi-S-Box Generated by Hyperchaotic System and Mixture of Pixel Bits, Fractals (2024), 2440039. https://doi.org/10.1142/S0218348X24400395.
- H. Natiq, N.M.G. Al-Saidi, S.J. Obaiys, M.N. Mahdi, A.K. Farhan, Image Encryption Based on Local Fractional Derivative Complex Logistic Map, Symmetry 14 (2022), 1874. https://doi.org/10.3390/sym14091874.
- D.S. Ali, N.A. Alwan, N.M.G. Al-Saidi, Image Encryption Based on Highly Sensitive Chaotic System, AIP Conf. Proc. 2183 (2019), 080007. https://doi.org/10.1063/1.5136200.
- Z. Shao, Digital Signature Schemes Based on Factoring and Discrete Logarithms, Electron. Lett. 38 (2002), 1518–1519. https://doi.org/10.1049/el:20021093.
- W.H. He, Digital Signature Scheme Based on Factoring Anddiscrete Logarithms, Electron. Lett. 37 (2001), 220–222. https://doi.org/10.1049/el:20010149.
- E. R, G. Anjaneyulu, A Modified Wei-Hua-He Digital Signature Scheme Based on Factoring and Discrete Logarithm, Symmetry 14 (2022), 2443. https://doi.org/10.3390/sym14112443.
- H. Qian, Z. Cao, H. Bao, Cryptanalysis of Li–Tzeng–Hwang’s Improved Signature Schemes Based on Factoring and Discrete Logarithms, Appl. Math. Comput. 166 (2005), 501–505. https://doi.org/10.1016/j.amc.2004.06.054.
- C.T. Wang, C.H. Lin, C.C. Chang, Signature Schemes Based on Two Hard Problems Simultaneously, in: 17th International Conference on Advanced Information Networking and Applications, 2003. AINA 2003., IEEE Comput. Soc, Xi’an, China, 2003: pp. 557–560. https://doi.org/10.1109/AINA.2003.1192943.
- E.S. Ismail, N.M.F. That, R.R. Ahmad, A New Digital Signature Scheme Based on Factoring and Discrete Logarithms, J. Math. Stat. 4 (2008), 222-225.
- K. Chain, W.-C. Kuo, A New Digital Signature Scheme Based on Chaotic Maps, Nonlinear Dyn. 74 (2013), 1003–1012. https://doi.org/10.1007/s11071-013-1018-1.
- S. Chiou, Novel Digital Signature Schemes Based on Factoring and Discrete Logarithms, Int. J. Secur. Appl. 10 (2016), 295- 310.
- E.S. Ismail, N.M.F. Tahat, A New Signature Scheme Based on Multiple Hard Number Theoretic Problems, ISRN Commun. Netw. 2011 (2011), 231649. https://doi.org/10.5402/2011/231649.
- H. Cui, R.H. Deng, J.K. Liu, X. Yi, Y. Li, Server-Aided Attribute-Based Signature With Revocation for Resource-Constrained Industrial-Internet-of-Things Devices, IEEE Trans. Ind. Inform. 14 (2018), 3724–3732. https://doi.org/10.1109/TII.2018.2813304.
- C. Esposito, A. Castiglione, F. Palmieri, A.D. Santis, Integrity for an Event Notification Within the Industrial Internet of Things by Using Group Signatures, IEEE Trans. Ind. Inform. 14 (2018), 3669–3678. https://doi.org/10.1109/TII.2018.2791956.
- L. Shen, J. Ma, X. Liu, F. Wei, M. Miao, A Secure and Efficient ID-Based Aggregate Signature Scheme for Wireless Sensor Networks, IEEE Internet Things J. 4 (2017), 546–554. https://doi.org/10.1109/JIOT.2016.2557487.
- M.A. Mughal, X. Luo, A. Ullah, S. Ullah, Z. Mahmood, A Lightweight Digital Signature Based Security Scheme for Human-Centered Internet of Things, IEEE Access 6 (2018), 31630–31643. https://doi.org/10.1109/ACCESS.2018.2844406.
- D. Xiao, X. Liao, S. Deng, A Novel Key Agreement Protocol Based on Chaotic Maps, Inf. Sci. 177 (2007), 1136–1142. https://doi.org/10.1016/j.ins.2006.07.026.
- Y. Niu, X. Wang, An Anonymous Key Agreement Protocol Based on Chaotic Maps, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1986–1992. https://doi.org/10.1016/j.cnsns.2010.08.015.
- X. Wang, J. Zhao, An Improved Key Agreement Protocol Based on Chaos, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4052–4057. https://doi.org/10.1016/j.cnsns.2010.02.014.
- D. Veeman, H. Natiq, N.M.G. Al-Saidi, K. Rajagopal, S. Jafari, I. Hussain, A New Megastable Chaotic Oscillator with Blinking Oscillation Terms, Complexity 2021 (2021), 5518633. https://doi.org/10.1155/2021/5518633.
- E.J. Yoon, I.-S. Jeon, An Efficient and Secure Diffie–Hellman Key Agreement Protocol Based on Chebyshev Chaotic Map, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2383–2389. https://doi.org/10.1016/j.cnsns.2010.09.021.
- M.S. Hwang, C.C. Yang, S.-F. Tzeng, Improved Digital Signature Scheme Based on Factoring and Discrete Logarithms, J. Discrete Math. Sci. Cryptogr. 5 (2002), 151–155. https://doi.org/10.1080/09720529.2002.10697946.
- S.F. Pon, E.-H. Lu, A.B. Jeng, Meta-He Digital Signatures Based on Factoring and Discrete Logarithms, Appl. Math. Comput. 165 (2005), 171–176. https://doi.org/10.1016/j.amc.2004.04.082.
- S.F. Tzeng, C.Y. Yang, M.-S. Hwang, A New Digital Signature Scheme Based on Factoring and Discrete Logarithms, Int. J. Comput. Math. 81 (2004), 9–14. https://doi.org/10.1080/00207160310001614954.
- L. Harn, Public-Key Cryptosystem Design Based on Factoring and Discrete Logarithms, IEE Proc. Comput. Digit. Tech. 141 (1994), 193-195. https://doi.org/10.1049/ip-cdt:19941040.
- N.-Y. Lee, T. Hwang, Modified Harn Signature Scheme Based on Factorising and Discrete Logarithms, IEE Proc. Comput. Digit. Tech. 143 (1996), 196. https://doi.org/10.1049/ip-cdt:19960335.
- N.M.G. Al-Saidi, S.J. Obaiys, N.A. Alwan, A.J. Mohammed, A.K. Farhan, Y. Karaca, Secure Image Encryption Using Single-Mode Fiber and Dense Wavelength Division Multiplexing in Chaotic Systems, in: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A. C. Rocha, M.N. Faginas Lago (Eds.), Computational Science and Its Applications – ICCSA 2024 Workshops, Springer, Cham, 2024: pp. 72–90. https://doi.org/10.1007/978-3-031-65154-0_5.
- R.B. Naik, U. Singh, A Review on Applications of Chaotic Maps in Pseudo-Random Number Generators and Encryption, Ann. Data Sci. 11 (2024), 25–50. https://doi.org/10.1007/s40745-021-00364-7.
- N.A. Alwan, S.J. Obaiys, N.M.G. Al-Saidi, N.F.B.M. Noor, Y. Karaca, A Pseudo Random Number Generator Based on 4D Hyperchaotic Systems, Riddled Basins of Attraction and Advanced Microfluidic Technology, in: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A. C. Rocha, M.N. Faginas Lago (Eds.), Computational Science and Its Applications – ICCSA 2024 Workshops, Springer, Cham, 2024: pp. 91–109. https://doi.org/10.1007/978-3-031-65154-0_6.
- Z.A. Abduljabbar, I.Q. Abduljaleel, J. Ma, et al. Provably Secure and Fast Color Image Encryption Algorithm Based on S-Boxes and Hyperchaotic Map, IEEE Access 10 (2022), 26257–26270. https://doi.org/10.1109/ACCESS.2022.3151174.
- H. Saeed, H.E. Ahmed, T.O. Diab, et al. Evaluation of the Most Suitable Hyperchaotic Map in S-Box Design Used in Image Encryption, Int. J. Multidiscip. Res. Publ. 5 (2022), 176-182.
- M.T. Wazi, D.S. Ali, N.M.G. Al-Saidi, N.A. Alawn, A Secure Image Cryptosystem via Multiple Chaotic Maps, Discrete Math. Algorithms Appl. 14 (2022), 2150141. https://doi.org/10.1142/S179383092150141X.
- M.E. Goggin, B. Sundaram, P.W. Milonni, Quantum Logistic Map, Phys. Rev. A 41 (1990), 5705–5708. https://doi.org/10.1103/PhysRevA.41.5705.
- E. Al Solami, M. Ahmad, C. Volos, M.N. Doja, M.M.S. Beg, A New Hyperchaotic System-Based Design for Efficient Bijective Substitution-Boxes, Entropy 20 (2018), 525. https://doi.org/10.3390/e20070525.
- A.A. Alzaidi, M. Ahmad, M.N. Doja, E.A. Solami, M.M.S. Beg, A New 1D Chaotic Map and β-Hill Climbing for Generating Substitution-Boxes, IEEE Access 6 (2018), 55405–55418. https://doi.org/10.1109/ACCESS.2018.2871557.
- H. Saeed, M.A. Elsisi, T.O. Diab, W.I. El Sobky, M.S. Abdel-Wahed, A.K. Mahmoud, Famous Digital Signatures Used in Smart Contracts, in: 2023 International Telecommunications Conference, IEEE, Alexandria, Egypt, 2023: pp. 649–656. https://doi.org/10.1109/ITC-Egypt58155.2023.10206283.
- J. Na, H.Y. Kim, N. Park, B. Seo, Comparative Analysis of Schnorr Digital Signature and ECDSA for Efficiency Using Private Ethereum Network, IEIE Trans. Smart Process. Comput. 11 (2022), 231-239.
- Y. Qin, B. Zhang, Privacy-Preserving Biometrics Image Encryption and Digital Signature Technique Using Arnold and ElGamal, Appl. Sci. 13 (2023), 8117. https://doi.org/10.3390/app13148117.