Some Statistical Estimations for Voting in Hough Transform

Main Article Content

Sameer A. H. Al-Subh, Kamal A. Al Banawi

Abstract

Transform The Hough Transform (HT) is an essential method in detecting geometric shapes in images. In this work, we concentrate on enhancing the accuracy and efficiency of the HT through the statistical estimation for the voting process in lines detection. We propose a statistical pattern detection method, which aims to introduce a new estimation of the polar angle θ of a detected line in an image and its radial distance r after estimating the slope and intercept of line of detection.

Article Details

References

  1. N. Aggarwal, W.C. Karl, Line Detection in Images through Regularized Hough Transform, IEEE Trans. Image Process. 15 (2006), 582–591. https://doi.org/10.1109/TIP.2005.863021.
  2. D.H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognit. 13 (1981), 111–122. https://doi.org/10.1016/0031-3203(81)90009-1.
  3. P. Ballester, Hough Transform and Astronomical Data Analysis, Vistas Astron. 40 (1996), 479–485. https://doi.org/10.1016/S0083-6656(96)00032-3.
  4. A. Bandera, J.M. Pérez-Lorenzo, J.P. Bandera, F. Sandoval, Mean Shift Based Clustering of Hough Domain for Fast Line Segment Detection, Pattern Recognit. Lett. 27 (2006), 578–586. https://doi.org/10.1016/j.patrec.2005.09.023.
  5. A. Bonci, T. Leo, S. Longhi, A Bayesian Approach to the Hough Transform for Line Detection, IEEE Trans. Syst. Man Cybern. A Syst. Hum. 35 (2005), 945–955. https://doi.org/10.1109/TSMCA.2005.853481.
  6. D. Comaniciu, V. Ramesh, P. Meer, The Variable Bandwidth Mean Shift and Data-Driven Scale Selection, in: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, IEEE Comput. Soc, Vancouver, BC, Canada, 2001: pp. 438–445. https://doi.org/10.1109/ICCV.2001.937550.
  7. C.-A. Boiangiu, O.-A. Dinu, C. Popescu, N. Constantin, C. Petrescu, Voting-Based Document Image Skew Detection, Appl. Sci. 10 (2020), 2236. https://doi.org/10.3390/app10072236.
  8. R. Dahyot, P. Charbonnier, F. Heitz, Unsupervised Statistical Detection of Changing Objects in Camera-in-Motion Video, in: Proceedings 2001 International Conference on Image Processing, IEEE, Thessaloniki, Greece, 2001: pp. 638–641. https://doi.org/10.1109/ICIP.2001.959126.
  9. R. Dahyot, N. Rea, A. Kokaram, N. Kingsbury, Inlier Modeling for Multimedia Data Analysis, in: IEEE 6th Workshop on Multimedia Signal Processing, 2004., IEEE, Siena, Italy, 2004: pp. 482–485. https://doi.org/10.1109/MMSP.2004.1436600.
  10. R. Dahyot, S. Wilson, Robust Scale Estimation for the Generalized Gaussian Probability Density Function, Adv. Methodol. Stat. 3 (2006), 21-37. https://doi.org/10.51936/elpo6579.
  11. R. Dahyot, Statistical Hough Transform, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009), 1502–1509. https://doi.org/10.1109/TPAMI.2008.288.
  12. H. Denman, N. Rea, A. Kokaram, Content-Based Analysis for Video from Snooker Broadcasts, Comput. Vis. Image Underst. 92 (2003), 176–195. https://doi.org/10.1016/j.cviu.2003.06.005.
  13. R.O. Duda, P.E. Hart, Use of the Hough Transformation to Detect Lines and Curves in Pictures, Commun. ACM 15 (1972), 11–15. https://doi.org/10.1145/361237.361242.
  14. A. Goldenshluger, A. Zeevi, The Hough Transform Estimator, Ann. Stat. 32 (2004), 1908-1932. https://doi.org/10.1214/009053604000000760.
  15. H.M. Ünver, Y. Kökver, E. Duman, O.A. Erdem, Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization, Appl. Sci. 9 (2019), 350. https://doi.org/10.3390/app9020350.
  16. P.V.C. Hough, Methods of Means for Recognizing Complex Patterns, US Patent 3 069 654, (1962).
  17. J. Illingworth, J. Kittler, A Survey of the Hough Transform, Comput. Vis. Graph. Image Process. 44 (1988), 87–116. https://doi.org/10.1016/S0734-189X(88)80033-1.
  18. Q. Ji, R.M. Haralick, Error Propagation for the Hough Transform, Pattern Recognit. Lett. 22 (2001), 813–823. https://doi.org/10.1016/S0167-8655(01)00026-5.
  19. C. Kimme, D. Ballard, J. Sklansky, Finding Circles by an Array of Accumulators, Commun. ACM 18 (1975), 120–122. https://doi.org/10.1145/360666.360677.
  20. A. Kokaram, N. Rea, R. Dahyot, et al. Browsing Sports Video: Trends in Sports-Related Indexing and Retrieval Work, IEEE Signal Process. Mag. 23 (2006), 47–58. https://doi.org/10.1109/MSP.2006.1621448.
  21. V.F. Leavers, Which Hough Transform?, CVGIP Image Underst. 58 (1993), 250–264. https://doi.org/10.1006/ciun.1993.1041.
  22. P.M. Merlin, D.J. Farber, A Parallel Mechanism for Detecting Curves in Pictures, IEEE Trans. Comput. C–24 (1975), 96–98. https://doi.org/10.1109/T-C.1975.224087.
  23. O’Gorman, Clowes, Finding Picture Edges Through Collinearity of Feature Points, IEEE Trans. Comput. C–25 (1976), 449–456. https://doi.org/10.1109/TC.1976.1674627.
  24. B. Schiele, J.L. Crowley, Recognition without Correspondence Using Multidimensional Receptive Field Histograms, Int. J. Comput. Vis. 36 (2000), 31–50. https://doi.org/10.1023/A:1008120406972.
  25. C. Schmid, R. Mohr, C. Bauckhage, Evaluation of Interest Point Detectors, Int. J. Comput. Vis. 37 (2000), 151–172. https://doi.org/10.1023/A:1008199403446.
  26. R.M. Steele, C. Jaynes, Feature Uncertainty Arising from Covariant Image Noise, in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, San Diego, CA, USA, 2005: pp. 1063–1070. https://doi.org/10.1109/CVPR.2005.158.
  27. Tsuji, Matsumoto, Detection of Ellipses by a Modified Hough Transformation, IEEE Trans. Comput. C–27 (1978), 777–781. https://doi.org/10.1109/TC.1978.1675191.
  28. P. De Souza, Automatic Rib Detection in Chest Radiographs, Vis. Graph. Image Process. 23 (1983), 129–161. https://doi.org/10.1016/0734-189X(83)90109-3.
  29. Z. Xu, B.S. Shin, R. Klette, Accurate and Robust Line Segment Extraction Using Minimum Entropy with Hough Transform, IEEE Transactions on Image Processing 24 (2015), 813–822. https://doi.org/10.1109/TIP.2014.2387020.