Central Limit Theorem for Markov Chains with Variable Memory via the Chen-Stein Method

Main Article Content

Victorien Konané, Claude Yaméogo, Wahabo Baguian

Abstract

In this paper, we studied Markov chains of variable length and the convergence of persistent walk.We, also, looked at the rate of convergence of such process. We also provide the use of variable-memory stochastic chains in risk models.

Article Details

References

  1. G.H. Weiss, Aspects and Applications of the Random Walk, North-Holland, Amsterdam, 1994. https://cir.nii.ac.jp/crid/1130000796986494208
  2. P. Vallois, C.S. Tapiero, Memory-Based Persistence in a Counting Random Walk Process, Physica A: Stat. Mech. Appl. 386 (2007), 303–317. https://doi.org/10.1016/j.physa.2007.08.027.
  3. G.I. Taylor, Diffusion by Continuous Movements, Proc. Lond. Math. Soc. 20 (1921), 196–212.
  4. S. Herrmann, P. Vallois, From Persistent Random Walk to the Telegraph Noise, Stoch. Dyn. 10 (2010), 161–196. https://doi.org/10.1142/S0219493710002905.
  5. S. Goldstein, On Diffusion by Discontinuous Movements, and on the Telegraph Equation, Q. J. Mech. Appl. Math. 4 (1951), 129–156. https://doi.org/10.1093/qjmam/4.2.129.
  6. G.H. Weiss, Some Applications of Persistent Random Walks and the Telegrapher’s Equation, Physica A: Stat. Mech. Appl. 311 (2002), 381–410. https://doi.org/10.1016/S0378-4371(02)00805-1.
  7. M. Kac, A Stochastic Model Related to the Telegrapher’s Equation, Rocky Mt. J. Math. 4 (1974), 497-509. https://www.jstor.org/stable/44236399.
  8. L.H.Y. Chen, L. Goldstein, Q.M. Shao, Normal Approximation by Stein’s Method, Springer, Berlin Heidelberg, 2011.
  9. J. Rissanen, A Universal Data Compression System, IEEE Trans. Inf. Theory 29 (1983), 656–664. https://doi.org/10.1109/TIT.1983.1056741.
  10. A.C. Berry, The Accuracy of the Gaussian Approximation to the Sum of Independent Variates, Trans. Amer. Math. Soc. 49 (1941), 122–136. https://doi.org/10.1090/S0002-9947-1941-0003498-3.
  11. S. Gallo, N.L. Garcia, Perfect Simulation for Stochastic Chains of Infinite Memory: Relaxing the Continuity Assumption, arXiv:1005.5459 [math.PR] (2010). https://doi.org/10.48550/ARXIV.1005.5459.
  12. R. Fernandez, G. Maillard, Construction of a Specification from Its Singleton Part, arXiv:math/0409539 [math.PR] (2004). https://doi.org/10.48550/ARXIV.MATH/0409539.
  13. T.E. Harris, On Chains of Infinite Order, Pac. J. Math. 5 (1955), 707-724.
  14. A.C. Berry, The Accuracy of the Gaussian Approximation to the Sum of Independent Variates, Trans. Amer. Math. Soc. 49 (1941), 122–136. https://doi.org/10.1090/S0002-9947-1941-0003498-3.
  15. B.A. Zalesski, V.V. Sazonov, V.V. Ulyanov, A Sharp Estimate for the Accuracy of the Normal Approximation in a Hilbert Space, Theory Probab. Appl. 33 (1988), 700-701.
  16. M. Jirak, Rate of Convergence for Hilbert Space Valued Processes, Bernoulli 24 (2018), 202-230. https://doi.org/10.3150/16-BEJ870.
  17. P. Collet, A. Galves, Chains of Infinite Order, Chains with Memory of Variable Length, and Maps of the Interval, J. Stat. Phys. 149 (2012), 73–85. https://doi.org/10.1007/s10955-012-0579-6.
  18. P. Cénac, B. Chauvin, S. Herrmann, P. Vallois, Persistent Random Walks, Variable Length Markov Chains and Piecewise Deterministic Markov Processes, arXiv:1208.3358 [math.PR] (2012). https://doi.org/10.48550/ARXIV.1208.3358.
  19. S. Herrmann, P. Vallois, From Persistent Random Walk to the Telegraph Noise, Stoch. Dyn. 10 (2010), 161–196. https://doi.org/10.1142/S0219493710002905.
  20. V.F. Konane, C. Yaméogo, W. Baguian, Asymptotic Probability Expansions for Random Elements in a Hilbert Space, Contemp. Math. 4 (2023), 1048–1061. https://doi.org/10.37256/cm.4420232651.
  21. L. Hervé, Vitesse de Convergence Dans Le Théorème Limite Central Pour Des Chaînes de Markov Fortement Ergodiques, Ann. Inst. Henri Poincaré, Probab. Stat. 44 (2008), 280-292. https://doi.org/10.1214/07-AIHP101.
  22. A.D. Barbour, L.H.Y. Chen, An Introduction to Stein’s Method, World Scientific, 2005. https://doi.org/10.1142/5792.
  23. C. Yameogo, V.F. Konane, W. Baguian, On Hilbertian Stochastic Processes: Convergence in the Central Limit Theorem, Far East J. Theor. Stat. 68 (2024), 305–333. https://doi.org/10.17654/0972086324018.