K-Frames in Super Hilbert C∗-Modules

Main Article Content

Abdellatif Lfounoune, Roumaissae El Jazzar

Abstract

In this paper, we study the theory of K-frames in super Hilbert C∗-modules. We introduce the concept of super Hilbert modules as direct sums of Hilbert C∗-modules and explore how frames and K-frames can be defined and characterized within this framework. Our main results provide new characterizations of K-frames in super Hilbert C∗-modules, as well as necessary and sufficient conditions under which sequences in super Hilbert C∗-modules form K-frames. Additionally, we investigate the relationships between K-frames, minimal frames, and orthonormal bases, offering several propositions and illustrative examples. These findings extend the existing frame theory in Hilbert spaces to the richer structure of Hilbert C∗-modules, thereby contributing to a deeper understanding of operator theory and functional analysis in the context of C∗-algebras.

Article Details

References

  1. A. Ahmdi, A. Rahimi, K-Orthonormal and K-Riesz Bases, Sahand Commun. Math. Anal. (2020), 59-72. https://doi.org/10.22130/scma.2020.130958.827.
  2. N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert C∗-Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
  3. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser Boston, 2003. https://doi.org/10.1007/978-0-8176-8224-8.
  4. J.B. Conway, A Course in Operator Theory, American Mathematical Society, Providence, 2000.
  5. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
  6. L. Gavruta, Frames for Operators, Appl. Comput. Harmon. Anal. 32 (2012), 139–144. https://doi.org/10.1016/j.acha.2011.07.006.
  7. M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous ∗-g-Frames in Hilbert C ∗ - Modules, J. Pseudo-Differ. Oper. Appl. 15 (2024), 2. https://doi.org/10.1007/s11868-023-00571-1.
  8. D. Han, D.R. Larson, Frames, Bases, and Group Representations, American Mathematical Society, Providence, 2000.
  9. W. Jing, Frames in Hilbert C ∗ -Modules, PhD Thesis, University of Central Florida, 2006.
  10. I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839-858. https://doi.org/10.2307/2372552.
  11. A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. (2024). https://doi.org/10.1007/s41478-024-00831-3.
  12. H. Massit, M. Rossafi, C. Park, Some Relations between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
  13. A. Najati, M. Mohammadi Saem, P. Gavru¸ta, Frames and Operators in Hilbert C∗-Modules, Oper. Matrices 10 (2016), 73–81. https://doi.org/10.7153/oam-10-06.
  14. M. Rashidi-Kouchi, Frames in Super Hilbert Modules, Sahand Commun. Math. Anal. 9 (2018), 129-142. https://doi.org/10.22130/scma.2018.23847.
  15. M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous G-Frames with C∗-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
  16. M. Rossafi, S. Kabbaj, Generalized Frames for B(H, K), Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
  17. M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert C ∗ -Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
  18. M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. (2024). https://doi.org/10.1007/s41478-024-00869-3.
  19. X. Xiao, Y. Zhu, L. Gavru¸ta, Some Properties of K-Frames in Hilbert Spaces, Results Math. 63 (2013), 1243–1255. https://doi.org/10.1007/s00025-012-0266-6.