Advancements in Multivariate Distribution Modeling: Introducing the Multivariate Kumaraswamy Exponential Pareto distribution (MKEPD) Framework

Main Article Content

Abdullah Ali H. Ahmadini

Abstract

This study aims to formulate a new probability distribution, called the Kumaraswamy Exponential Pareto distribution (KEPD), from the Exponential Pareto distribution (EP). This distribution was designed to be suitable for fitting real-life data by utilizing the Kumaraswamy family to create a novel continuous probability distribution approach. This study derived some properties of this new distribution and conducted a simulation study using different parameter combinations. The results of the simulation study demonstrated the impact of additional parameters on the suggested distribution. In real-life data applications, the suggested distribution exhibits a better fit than the existing Kumaraswamy Exponentiated Pareto Distribution (KEPD), Exponential Pareto Distribution (EP), and Exponential Distribution (Exp).

Article Details

References

  1. M. Aldeni, C. Lee, F. Famoye, Families of Distributions Arising from the Quantile of Generalized Lambda Distribution, J. Stat. Distrib. Appl. 4 (2017), 25. https://doi.org/10.1186/s40488-017-0081-4.
  2. P. Kumaraswamy, A Generalized Probability Density Function for Double-Bounded Random Processes, J. Hydrol. 46 (1980), 79–88. https://doi.org/10.1016/0022-1694(80)90036-0.
  3. G.M. Cordeiro, M. De Castro, A New Family of Generalized Distributions, J. Stat. Comput. Simul. 81 (2011), 883–898. https://doi.org/10.1080/00949650903530745.
  4. A. Alzaatreh, C. Lee, F. Famoye, T-Normal Family of Distributions: A New Approach to Generalize the Normal Distribution, J. Stat. Distrib. Appl. 1 (2014), 16. https://doi.org/10.1186/2195-5832-1-16.
  5. A. Akinsete, F. Famoye, C. Lee, The Beta-Pareto Distribution, Statistics 42 (2008), 547–563. https://doi.org/10.1080/02331880801983876.
  6. E. Alshawarbeh, F. Famoye, C. Lee, Beta-Cauchy Distribution: Some Properties and Applications, J. Stat. Theory Appl. 12 (2013), 378. https://doi.org/10.2991/jsta.2013.12.4.5.
  7. A.A.H. Ahmadini, R. Singh, Y.S. Raghav, A. Kumari, Estimation of Population Mean Using Ranked Set Sampling in the Presence of Measurement Errors, Kuwait J. Sci. 51 (2024), 100236. https://doi.org/10.1016/j.kjs.2024.100236.
  8. Y.S. Raghav, R. Singh, R. Mishra, N.K. Adichawal, I. Ali, Efficient Classes of Robust Ratio Type Estimators of Mean and Variance in Adaptive Cluster Sampling, Int. J. Agric. Stat. Sci. 20 (2024), 173. https://doi.org/10.59467/IJASS.2024.20.173.
  9. A. Akinsete, F. Famoye, C. Lee, The Beta-Pareto Distribution, Statistics 42 (2008), 547–563. https://doi.org/10.1080/02331880801983876.
  10. A.A.K. Kareema, M.A. Boshi, Exponential Pareto Distribution, Math. Theory Model. 3 (2013), 135-146.
  11. Y.S. Raghav, A.A.H. Ahmadini, A.M. Mahnashi, K.U.I. Rather, Enhancing Estimation Efficiency with Proposed Estimator: A Comparative Analysis of Poisson Regression-Based Mean Estimators, Kuwait J. Sci. 52 (2025), 100282. https://doi.org/10.1016/j.kjs.2024.100282.
  12. M.A. Aljarrah, C. Lee, F. Famoye, On Generating T-X Family of Distributions Using Quantile Functions, J. Stat. Distrib. Appl. 1 (2014), 24. https://doi.org/10.1186/2195-5832-1-2.