A Modern Stability Analysis of Mixed Duodecic-Tridecic Functional Equations in Neutrosophic Normed Spaces: A Hyers-Ulam Perspective

Main Article Content

P. Agilan, K. Julietraja, Ahmad Aloqaily, Nabil Mlaiki

Abstract

This study delves into the stability of mixed duodecic-tridecic functional equations within the framework of neutrosophic normed spaces, employing the Hyers-Ulam stability perspective. The paper extends classical stability concepts to this enriched mathematical setting, incorporating uncertainty and imprecision inherent in neutrosophic spaces. By utilizing advanced analytical techniques, it establishes sufficient conditions for stability, providing a significant contribution to functional equation theory and its applications in areas with uncertainty modeling.

Article Details

References

  1. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
  2. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  3. P. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
  4. J.M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Funct. Anal. 46 (1982), 126–130. https://doi.org/10.1016/0022-1236(82)90048-9.
  5. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1.
  6. T.M. Rassias, ed., Functional Equations, Inequalities and Applications, Springer, Dordrecht, 2003. https://doi.org/10.1007/978-94-017-0225-6.
  7. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
  8. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  9. F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis, American Research Press, 1998.
  10. F. Smarandache, A Unifying Field In Logics: Neutrosophic Logic, American Research Press, 1999.
  11. T. Bera, N.K. Mahapatra, On Neutrosophic Soft Linear Spaces, Fuzzy Inf. Eng. 9 (2017), 299–324. https://doi.org/10.1016/j.fiae.2017.09.004.
  12. T. Bera, N.K. Mahapatra, Neutrosophic Soft Normed Linear Spaces, Neutrosophic Sets Syst. 23 (2018), 52–71.
  13. A.A.A. Agboola, A.D. Akwu, Y.T. Oyebo, Neutrosophic Groups and Subgroups, Int. J. Math. Combin. 3 (2012), 1-9.
  14. A.A.A. Agboola, S.A. Akinleye, Neutrosophic Vector Spaces. Neutrosophic Sets Syst. 4 (2014), 9-18.
  15. W.B. Vasantha, F. Smarandache, Neutrosophic Rings, Hexis, Phoenix, 2006.
  16. M. Abobala, Classical Homomorphisms Between n-Refined Neutrosophic Rings, Int. J. Neutrosophic Sci. 7 (2020), 74–78. https://doi.org/10.54216/IJNS.070204.
  17. M. Abobala, On the Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations, J. Math. 2021 (2021), 5591576. https://doi.org/10.1155/2021/5591576.
  18. M. Abobala, Partial Foundation of Neutrosophic Number Theory, Neutrosophic Sets Syst. 39 (2021), 120-132.
  19. W.B.V. Kandasamy, K. Ilanthenral, F. Smarandache, Neutrosophic Graphs: A New Dimension To Graph Theory, Europa Nova, 2015. https://doi.org/10.5281/ZENODO.31820.
  20. F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability, Sitech, 2013.
  21. A. Pasupathi, J. Konsalraj, N. Fatima, et al. Direct and Fixed-Point Stability–Instability of Additive Functional Equation in Banach and Quasi-Beta Normed Spaces, Symmetry 14 (2022), 1700. https://doi.org/10.3390/sym14081700.
  22. P. Agilan, K. Julietraja, N. Mlaiki, A. Mukheimer, Intuitionistic Fuzzy Stability of an Euler–Lagrange Symmetry Additive Functional Equation via Direct and Fixed Point Technique (FPT), Symmetry 14 (2022), 2454. https://doi.org/10.3390/sym14112454.
  23. P. Agilan, M.M.A. Almazah, K. Julietraja, A. Alsinai, Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces, Mathematics 11 (2023), 681. https://doi.org/10.3390/math11030681.
  24. P. Agilan, K. Julietraja, M.M.A. Almazah, A. Alsinai, Stability Analysis of a New Class of Series Type Additive Functional Equation in Banach Spaces: Direct and Fixed Point Techniques, Mathematics 11 (2023), 887. https://doi.org/10.3390/math11040887.
  25. A. Aloqaily, P. Agilan, K. Julietraja, S. Annadurai, N. Mlaiki, A Novel Stability Analysis of Functional Equation in Neutrosophic Normed Spaces, Bound. Value Probl. 2024 (2024), 47. https://doi.org/10.1186/s13661-024-01854-2.
  26. P. Agilan, K. Julietraja, B. Kanimozhi, A. Alsinai, Hyers Stability of AQC Functional Equation, Dyn. Contin. Discr. Impuls. Syst. Ser. B: Appl. Algorithms 31 (2024), 63–75.
  27. P. Agilan, K. Julietraja, S. Aljohani, N. Mlaiki, Generalised Ulam-Hyers Stability Analysis for System of Additive Functional Equation in Fuzzy and Random Normed Spaces: Direct and Fixed Point Approach, Int. J. Anal. Appl. 22 (2024), 201. https://doi.org/10.28924/2291-8639-22-2024-201.