Energy Distribution Effect on Bremsstrahlung Radiation Produced by \(B_{11}^{5}\) and \(Al_{27}^{13}\)

Main Article Content

R.J. Almatrafi, S.A. Alkhateeb, N.A. Almuallem

Abstract

By using the Bethe-Heitler equation, this work determines the energy distribution of Bremsstrahlung radiation for \(B_{11}^{5}\) and \(Al_{27}^{13}\). We utilize the mathematical program "Mathematica" to contrast the electromagnetic impacts of photons resulting from interactions of electrons with boron and aluminum nuclei. We compare the effects of electric and magnetic cross-sections on the generation of Bremsstrahlung radiation. We will examine the impact of electric and magnetic fields on the production of Bremsstrahlung radiation using graphs. We also investigate the effect of atom mass on the emission of Bremsstrahlung radiation. According to our results, certain types of X-rays can be produced by using magnetic interactions.

Article Details

References

  1. A. Omar, P. Andreo, G. Poludniowski, Performance of Different Theories for the Angular Distribution of Bremsstrahlung Produced by keV Electrons Incident upon a Target, Radiat. Phys. Chem. 148 (2018), 73–85. https://doi.org/10.1016/j.radphyschem.2018.02.009.
  2. I.J. Das, C. Cheng, R.J. Watts, A. Ahnesjö, J. Gibbons, X.A. Li, J. Lowenstein, R.K. Mitra, W.E. Simon, T.C. Zhu, Accelerator Beam Data Commissioning Equipment and Procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM, Med. Phys. 35 (2008), 4186–4215. https://doi.org/10.1118/1.2969070.
  3. G.J. Kutcher, L. Coia, M. Gillin, et al. Comprehensive QA for Radiation Oncology: Report of AAPM Radiation Therapy Committee Task Group 40, Med. Phys. 21 (1994), 581–618. https://doi.org/10.1118/1.597316.
  4. E.E. Klein, J. Hanley, J. Bayouth, et al. Task Group 142 Report: Quality Assurance of Medical Acceleratorsa), Med. Phys. 36 (2009), 4197–4212. https://doi.org/10.1118/1.3190392.
  5. J.D. Faulk, C.A. Quarles, Coincidence Measurement of the Fully Differential Cross Section for Atomic-Field Bremsstrahlung, Phys. Rev. A 9 (1974), 732–742. https://doi.org/10.1103/PhysRevA.9.732.
  6. A. Aehlig, L. Metzger, M. Scheer, Measurement of the Absolute Cross Section for the Elementary Process of Atomic Field Bremsstrahlung, Z. Phys. A 281 (1977), 205–209. https://doi.org/10.1007/BF01408838.
  7. C.D. Shaffer, X.-M. Tong, R.H. Pratt, Triply Differential Cross Section and Polarization Correlations in Electron Bremsstrahlung Emission, Phys. Rev. A 53 (1996), 4158–4163. https://doi.org/10.1103/PhysRevA.53.4158.
  8. S. Keller, R.M. Dreizler, Relativistic Independent Particle Approximation Study of Triply Differential Cross Sections for Electron - Atom Bremsstrahlung, J. Phys. B 30 (1997), 3257–3266. https://doi.org/10.1088/0953-4075/30/14/016.
  9. H.K. Tseng, Relativistic Calculation of the Unpolarized Triple-Differential Cross Section and the Polarization Correlation of the Electron Bremsstrahlung from Atoms, J. Phys. B 35 (2002), 1129–1142. https://doi.org/10.1088/0953-4075/35/5/301.
  10. M. Komma, W. Nakel, Two-Parameter Coincidence Measurements of Bremsstrahlung, Electron-Electron Bremsstrahlung, and K-Shell Ionisation for 300 keV Electron Impact, J. Phys. B 15 (1982), 1433–1441. https://doi.org/10.1088/0022-3700/15/9/018.
  11. E. Haug, W. Nakel, The Elementary Process of Bremsstrahlung, World Scientific, Singapore, 2004.
  12. J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 2021.
  13. D. Greenberger, K. Hentschel, F. Weinert, eds., Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, Springer, Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-540-70626-7.
  14. S. Al-Khateeb, Polarization Dependence of the Bremsstrahlung Cross-Section in the Scattering of Electrons by Nuclei with Electromagnetic Multipole Moments, J. King Abdulaziz Univ.-Sci. 23 (2011), 65–78. https://doi.org/10.4197/Sci.23-2.5.
  15. S.H. Morgan, Coulomb Corrections to the Bethe-Heitler Cross Sections for Electron-Nucleus Bremsstrahlung, NASA Technical Reports Server, (1970). https://ntrs.nasa.gov/citations/19710001524.
  16. R.P. Feynman, Quantum Electrodynamics, CRC Press, Boca Raton, 2018.
  17. A. Beiser, Concepts of Modern Physics, McGraw-Hill, New York, 2003.
  18. W. Zhu, Improved Bethe-Heitler Formula, Nucl. Phys. B 953 (2020), 114958. https://doi.org/10.1016/j.nuclphysb.2020.114958.
  19. W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2008.
  20. S.A. Alkhateeb, A.A. Alshaery, and R.A. Aldosary, Electron-positron pair production in electromagnetic field, J. Appl. Math. Phys. 10 (2022), 237–244. https://doi.org/10.4236/jamp.2022.102017.
  21. S.A. Alkhateeb, A.A. Alshaery, and R.A. Aldosary, Leptonic Pair Production in Electro Magnetic Field, Nucl. Sci. 7 (2022), 34–38.
  22. S. Alkhateeb, Effect of Nuclear Magnetic Distribution on Thephoto Production of Longitudinally PolarizedleptonPairs in the Field of Na2311 and Al2713 Nuclei, Therm. Sci. 24 (2020), 139–147. https://doi.org/10.2298/TSCI20S1139A.
  23. N.J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments, At. Data Nucl. Data Tables 90 (2005), 75–176. https://doi.org/10.1016/j.adt.2005.04.001.
  24. H. Bethe, W. Heitler, On the Stopping of Fast Particles and on the Creation of Positive Electrons, Proc. R. Soc. Lond. A. 146 (1934), 83–112. https://doi.org/10.1098/rspa.1934.0140.
  25. M. Habibi, A. Arefiev, T. Toncian, High Field Suppression of Bremsstrahlung Emission in High-Intensity Laser–Plasma Interactions, Phys. Plasmas 30 (2023), 103108. https://doi.org/10.1063/5.0167288.
  26. P. Fischer, Frontiers in Imaging Magnetism with Polarized X-Rays, Front. Phys. 2 (2015), 82. https://doi.org/10.3389/fphy.2014.00082.
  27. C.-T. Liao, C. Hernández-García, M.M. Murnane, Switching the Twist in X Rays with Magnets, Physics 14 (2021), 34. https://doi.org/10.1103/Physics.14.34.