On (m, n)-Fuzzy Sets and Their Application in Ordered Semigroups
Main Article Content
Abstract
In this paper, we introduce the concepts of (m, n)-fuzzy subsemigroups, (m, n)-fuzzy left (right, two-sided, bi-, (1, 2)-) ideals of an ordered semigroup and some their algebraic properties are studied, thereafter the relationship among their (m, n)-fuzzy ideals was investigated. Moreover, we characterize left (resp., right, two-sided, bi-) ideals by using (m, n)-fuzzy left (resp., right, two-sided, bi-) ideals. Finally, we characterize regular ordered semigroups and intra-regular ordered semigroups in terms of (m, n)-fuzzy left ideals, (m, n)-fuzzy right ideals, and (m, n)-fuzzy bi-ideals.
Article Details
References
- L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- Y. Xie, J. Liu, L. Wang, H∞ Filtering Design for Takagi-Sugeno Fuzzy Model with Immeasurable Premise Variables by Applying a Switching Method, ICIC Express Lett. 14 (2020), 257–264. https://doi.org/10.24507/icicel.14.03.257.
- N. Kuroki, Fuzzy Bi-Ideals in Semigroups, Comment. Math. Univ. St. Pauli. 28 (1979), 17–21.
- N. Kuroki, On Fuzzy Ideals and Fuzzy Bi-Ideals in Semigroups, Fuzzy Sets Syst. 5 (1981), 203–215. https://doi.org/10.1016/0165-0114(81)90018-X.
- N. Kehayopulu, M. Tsingelis, Fuzzy Ideals in Ordered Semigroups, Quasigroups Related Syst. 15 (2007), 279–289.
- K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
- I. Cristea, B. Davvaz, Atanassov’s Intuitionistic Fuzzy Grade of Hypergroups, Inf. Sci. 180 (2010), 1506–1517. https://doi.org/10.1016/j.ins.2010.01.002.
- B. Davvaz, W. Dudek, Y. Jun, Intuitionistic Fuzzy Hv-Submodules, Inf. Sci. 176 (2006), 285–300. https://doi.org/10.1016/j.ins.2004.10.009.
- Y.B. Jun, K.H. Kim, Intuitionistic Fuzzy Ideals of BCK-Algebras, Int. J. Math. Math. Sci. 24 (2000), 839–849. https://doi.org/10.1155/S0161171200004610.
- S. Yamak, O. Kazanc, B. Davvaz, Divisible and Pure Intuitionistic Fuzzy Subgroups and Their Properties, Int. J. Fuzzy Syst. 10 (2008), 298–307. https://doi.org/10.30000/IJFS.200812.0009.
- R.R. Yager, Pythagorean Fuzzy Subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IEEE, Edmonton, AB, Canada, 2013: pp. 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.
- R.R. Yager, Pythagorean Membership Grades in Multicriteria Decision Making, IEEE Trans. Fuzzy Syst. 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989.
- R.R. Yager, A.M. Abbasov, Pythagorean Membership Grades, Complex Numbers, and Decision Making: Pythagorean Membership Grades and Fuzzy Subsets, Int. J. Intell. Syst. 28 (2013), 436–452. https://doi.org/10.1002/int.21584.
- S. Bhunia, G. Ghorai, Q. Xin, On the Characterization of Pythagorean Fuzzy Subgroups, AIMS Math. 6 (2021), 962–978. https://doi.org/10.3934/math.2021058.
- A. Satirad, R. Chinram, A. Iampan, et al. Pythagorean Fuzzy Sets in UP-Algebras and Approximations, AIMS Math. 6 (2021), 6002–6032. https://doi.org/10.3934/math.2021354.
- M. Olgun, M. Ünver, ¸S. Yardımcı, Pythagorean Fuzzy Topological Spaces, Complex Intell. Syst. 5 (2019), 177–183. https://doi.org/10.1007/s40747-019-0095-2.
- T. Senapati, R.R. Yager, Fermatean Fuzzy Sets, J. Ambient Intell. Humaniz. Comput. 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0.
- I. Silambarasan, Fermatean Fuzzy Subgroups, J. Int. Math. Virtual Inst. 11 (2021), 1–16.
- H.Z. Ibrahim, T.M. Al-Shami, O.G. Elbarbary, (3, 2)-Fuzzy Sets and Their Applications to Topology and Optimal Choices, Comput. Intell. Neurosci. 2021 (2021), 1272266. https://doi.org/10.1155/2021/1272266.
- Y.B. Jun, K. Hur, The (m, n)-Fuzzy Set and Its Application in BCK-Algebras, Ann. Fuzzy Math. Inf. 24 (2022), 17–29.
- N. Kehayopulu, M. Tsingelis, Fuzzy Interior Ideals in Ordered Semigroups, Lobachevskii J. Math. 21 (2006), 65–71.
- Y. Cao, Characterizations of Regular Ordered Semigroups by Quasi-Ideals, Vietnam J. Math. 30 (2002), 239–250.
- X.Y. Xie, J. Tang, Regular Ordered Semigroups and Intra-Regular Ordered Semigroups in Terms of Fuzzy Subsets, Iran. J. Fuzzy Syst. 7 (2010), 121–140. https://doi.org/10.22111/ijfs.2010.180.