On (m, n)-Fuzzy Sets and Their Application in Ordered Semigroups

Main Article Content

Hataikhan Sanpan, Pakorn Palakawong na Ayutthaya, Somsak Lekkoksung

Abstract

In this paper, we introduce the concepts of (m, n)-fuzzy subsemigroups, (m, n)-fuzzy left (right, two-sided, bi-, (1, 2)-) ideals of an ordered semigroup and some their algebraic properties are studied, thereafter the relationship among their (m, n)-fuzzy ideals was investigated. Moreover, we characterize left (resp., right, two-sided, bi-) ideals by using (m, n)-fuzzy left (resp., right, two-sided, bi-) ideals. Finally, we characterize regular ordered semigroups and intra-regular ordered semigroups in terms of (m, n)-fuzzy left ideals, (m, n)-fuzzy right ideals, and (m, n)-fuzzy bi-ideals.

Article Details

References

  1. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  2. Y. Xie, J. Liu, L. Wang, H∞ Filtering Design for Takagi-Sugeno Fuzzy Model with Immeasurable Premise Variables by Applying a Switching Method, ICIC Express Lett. 14 (2020), 257–264. https://doi.org/10.24507/icicel.14.03.257.
  3. N. Kuroki, Fuzzy Bi-Ideals in Semigroups, Comment. Math. Univ. St. Pauli. 28 (1979), 17–21.
  4. N. Kuroki, On Fuzzy Ideals and Fuzzy Bi-Ideals in Semigroups, Fuzzy Sets Syst. 5 (1981), 203–215. https://doi.org/10.1016/0165-0114(81)90018-X.
  5. N. Kehayopulu, M. Tsingelis, Fuzzy Ideals in Ordered Semigroups, Quasigroups Related Syst. 15 (2007), 279–289.
  6. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
  7. I. Cristea, B. Davvaz, Atanassov’s Intuitionistic Fuzzy Grade of Hypergroups, Inf. Sci. 180 (2010), 1506–1517. https://doi.org/10.1016/j.ins.2010.01.002.
  8. B. Davvaz, W. Dudek, Y. Jun, Intuitionistic Fuzzy Hv-Submodules, Inf. Sci. 176 (2006), 285–300. https://doi.org/10.1016/j.ins.2004.10.009.
  9. Y.B. Jun, K.H. Kim, Intuitionistic Fuzzy Ideals of BCK-Algebras, Int. J. Math. Math. Sci. 24 (2000), 839–849. https://doi.org/10.1155/S0161171200004610.
  10. S. Yamak, O. Kazanc, B. Davvaz, Divisible and Pure Intuitionistic Fuzzy Subgroups and Their Properties, Int. J. Fuzzy Syst. 10 (2008), 298–307. https://doi.org/10.30000/IJFS.200812.0009.
  11. R.R. Yager, Pythagorean Fuzzy Subsets, in: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IEEE, Edmonton, AB, Canada, 2013: pp. 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.
  12. R.R. Yager, Pythagorean Membership Grades in Multicriteria Decision Making, IEEE Trans. Fuzzy Syst. 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989.
  13. R.R. Yager, A.M. Abbasov, Pythagorean Membership Grades, Complex Numbers, and Decision Making: Pythagorean Membership Grades and Fuzzy Subsets, Int. J. Intell. Syst. 28 (2013), 436–452. https://doi.org/10.1002/int.21584.
  14. S. Bhunia, G. Ghorai, Q. Xin, On the Characterization of Pythagorean Fuzzy Subgroups, AIMS Math. 6 (2021), 962–978. https://doi.org/10.3934/math.2021058.
  15. A. Satirad, R. Chinram, A. Iampan, et al. Pythagorean Fuzzy Sets in UP-Algebras and Approximations, AIMS Math. 6 (2021), 6002–6032. https://doi.org/10.3934/math.2021354.
  16. M. Olgun, M. Ünver, ¸S. Yardımcı, Pythagorean Fuzzy Topological Spaces, Complex Intell. Syst. 5 (2019), 177–183. https://doi.org/10.1007/s40747-019-0095-2.
  17. T. Senapati, R.R. Yager, Fermatean Fuzzy Sets, J. Ambient Intell. Humaniz. Comput. 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0.
  18. I. Silambarasan, Fermatean Fuzzy Subgroups, J. Int. Math. Virtual Inst. 11 (2021), 1–16.
  19. H.Z. Ibrahim, T.M. Al-Shami, O.G. Elbarbary, (3, 2)-Fuzzy Sets and Their Applications to Topology and Optimal Choices, Comput. Intell. Neurosci. 2021 (2021), 1272266. https://doi.org/10.1155/2021/1272266.
  20. Y.B. Jun, K. Hur, The (m, n)-Fuzzy Set and Its Application in BCK-Algebras, Ann. Fuzzy Math. Inf. 24 (2022), 17–29.
  21. N. Kehayopulu, M. Tsingelis, Fuzzy Interior Ideals in Ordered Semigroups, Lobachevskii J. Math. 21 (2006), 65–71.
  22. Y. Cao, Characterizations of Regular Ordered Semigroups by Quasi-Ideals, Vietnam J. Math. 30 (2002), 239–250.
  23. X.Y. Xie, J. Tang, Regular Ordered Semigroups and Intra-Regular Ordered Semigroups in Terms of Fuzzy Subsets, Iran. J. Fuzzy Syst. 7 (2010), 121–140. https://doi.org/10.22111/ijfs.2010.180.