Ulam Stability of Quadratic Mapping Connected With Homomorphisms and Derivations in Non-Archimedean Banach Algebras

Main Article Content

Gowri Senthil, A. P. Pushpalatha, N. Vijaya, V. Sreelatha Devi, M. Balamurugan, A. Ramachandran, K. Tamilvanan

Abstract

This study presents a novel quadratic functional equation. The primary objective of this study is to examine the stability of a quadratic functional equation associated with homomorphisms and derivations (briefly, hom-der) in non-Archimedean Banach algebras through direct and fixed point methodologies. Furthermore, we offer examples wherein the stability of this quadratic functional equation can be regulated by the summation and multiplication of powers of norms.

Article Details

References

  1. T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  2. M. Arunkumar, S. Jayanthi, S. Hema Latha, Stability of Quadratic Derivations of Arun-Quadratic Functional Equation, Int. J. Math. Sci. Eng. Appl. 5 (2011), 433–443.
  3. R. Badora, On Approximate Ring Homomorphisms, J. Math. Anal. Appl. 276 (2002), 589–597. https://doi.org/10.1016/S0022-247X(02)00293-7.
  4. R. Badora, On Approximate Derivations, Math. Inequal. Appl. 9 (2006), 167–173.
  5. J.H. Bae and K.W. Jun, On the Generalized Hyers-Ulam-Rassias Stability of a Quadratic Functional Equation, Bull. Korean Math. Soc. 38 (2001), 325–336.
  6. St. Czerwik, On the Stability of the Quadratic Mapping in Normed Spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. https://doi.org/10.1007/BF02941618.
  7. M.E. Gordji, Nearly Ring Homomorphisms and Nearly Ring Derivations on Non-Archimedean Banach Algebras, Abstr. Appl. Anal. 2010 (2010), 393247. https://doi.org/10.1155/2010/393247.
  8. M.E. Gordji, H. Khodaei, On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstr. Appl. Anal. 2009 (2009), 923476. https://doi.org/10.1155/2009/923476.
  9. M. Eshaghi Gordji, H. Khodaei, R. Khodabakhsh, C. Park, Fixed Points and Quadratic Equations Connected with Homomorphisms and Derivations on Non-Archimedean Algebras, Adv. Differ. Equ. 2012 (2012), 128. https://doi.org/10.1186/1687-1847-2012-128.
  10. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
  11. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  12. H. Khodaei, Th.M. Rassias, Approximately Generalized Additive Functions in Several Variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22–41. https://doi.org/10.22075/ijnaa.2010.66.
  13. D.H. Hyers, T.M. Rassias, Approximate Homomorphisms, Aequat. Math. 44 (1992), 125–153. https://doi.org/10.1007/BF01830975.
  14. D.H. Hyers, S.M. Ulam, Approximately Convex Functions, Proc. Amer. Math. Soc. 3 (1952), 821–828. https://doi.org/10.1090/S0002-9939-1952-0049962-5.
  15. K.W. Jun, Y.H. Lee, On the Hyers-Ulam-Rassias Stability of a Pexiderized Quadratic Inequality, Math. Inequal. Appl. 4 (2001), 93–118. https://api.semanticscholar.org/CorpusID:125018748.
  16. P.L. Kannappan, Quadratic Functional Equation and Inner Product Spaces, Results Math. 27 (1995), 368–372. https://doi.org/10.1007/BF03322841.
  17. S.O. Kim, K. Tamilvanan, Fuzzy Stability Results of Generalized Quartic Functional Equations, Mathematics 9 (2021), 120. https://doi.org/10.3390/math9020120.
  18. T. Mouktonglang, R. Suparatulatorn, C. Park, Hyers-Ulam Stability of Hom-Derivations in Banach Algebras, Carpathian J. Math. 38 (2022), 839–846. https://www.jstor.org/stable/27150529.
  19. E. Movahednia, S. Eshtehar, Y. Son, Stability of Quadratic Functional Equations in Fuzzy Normed Spaces, Int. J. Math. Anal. 6 (2012), 2405–2412.
  20. S. Pinelas, V. Govindan, K. Tamilvanan, Stability of Non-Additive Functional Equation, IOSR J. Math. 14 (2018), 60–78.
  21. S. Pinelas, V. Govindan, K. Tamilvanan, Stability of Cubic Functional Equation in Random Normed Space, J. Adv. Math. 14 (2018), 7864–7877. https://doi.org/10.24297/jam.v14i2.7614.
  22. S. Pinelas, V. Govindan, K. Tamilvanan, Solution and Stability of an n -Dimensional Functional Equation, Analysis 39 (2019), 107–115. https://doi.org/10.1515/anly-2018-0029.
  23. J.M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Funct. Anal. 46 (1982), 126–130. https://doi.org/10.1016/0022-1236(82)90048-9.
  24. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1.
  25. Y. Sayyari, M. Dehghanian, C. Park, J.R. Lee, Stability of Hyper Homomorphisms and Hyper Derivations in Complex Banach Algebras, AIMS Math. 7 (2022), 10700–10710. https://doi.org/10.3934/math.2022597.
  26. P. Semrl, The Functional Equation of Multiplicative Derivation Is Superstable on Standard Operator Algebras, Integral Equ. Oper. Theory 18 (1994), 118–122. https://doi.org/10.1007/BF01225216.
  27. K. Tamilvanan, A.M. Alanazi, M.G. Alshehri, J. Kafle, Hyers-Ulam Stability of Quadratic Functional Equation Based on Fixed Point Technique in Banach Spaces and Non-Archimedean Banach Spaces, Mathematics 9 (2021), 2575. https://doi.org/10.3390/math9202575.
  28. K. Tamilvanan, A.M. Alanazi, J.M. Rassias, A.H. Alkhaldi, Ulam Stabilities and Instabilities of Euler–LagrangeRassias Quadratic Functional Equation in Non-Archimedean IFN Spaces, Mathematics 9 (2021), 3063. https://doi.org/10.3390/math9233063.
  29. K. Tamilvanan, N. Alessa, K. Loganathan, G. Balasubramanian, N. Namgyel, General Solution and Stability of Additive-Quadratic Functional Equation in IRN-Space, J. Funct. Spaces 2021 (2021), 8019135. https://doi.org/10.1155/2021/8019135.
  30. K. Tamilvanan, G. Balasubramanian, A.C. Sagayaraj, Finite Dimensional Even-Quadratic Functional Equation and Its Ulam-Hyers Stability, AIP Conf. Proc. 2261 (2020), 030002. https://doi.org/10.1063/5.0016865.
  31. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.