Woven Continuous Generalized Frames in Hilbert C∗-Modules

Main Article Content

El Houcine Ouahidi, Mohamed Rossafi

Abstract

The aim of this paper is to study woven c-g-frames for Hilbert C∗-modules. We begin by providing some definitions and key properties that are essential for studying this concept. Additionally, we present several properties of woven c-g-frames. Finally, we explore the perturbation theory related to woven c-g-frames.

Article Details

References

  1. L. Arambaši´c, On Frames for Countably Generated Hilbert C∗-Modules, Proc. Amer. Math. Soc. 135 (2007), 469–478. https://www.jstor.org/stable/20534595.
  2. N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert C∗-Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
  3. T. Bemrose, P.G. Casazza, K. Gröchenig, M.C. Lammers, R.G. Lynch, Weaving Frames, Oper. Matrices (2016), 1093–1116. https://doi.org/10.7153/oam-10-61.
  4. P.G. Casazza, D. Freeman, R.G. Lynch, Weaving Schauder Frames, J. Approx. Theory 211 (2016), 42–60. https://doi.org/10.1016/j.jat.2016.07.001.
  5. P.G. Casazza, R.G. Lynch, Weaving Properties of Hilbert Space Frames, in: 2015 International Conference on Sampling Theory and Applications, IEEE, Washington, DC, USA, 2015: pp. 110–114. https://doi.org/10.1109/SAMPTA.2015.7148861.
  6. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  7. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
  8. R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally C∗-Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
  9. D. Gabor, Theory of Communication, J. Inst. Electr. Eng. 93 (1946), 445–457. https://doi.org/10.1049/ji-3-2.1946.0076.
  10. M. Ghiati, M. Rossafi, M. Mouniane, H. Labrigui, A. Touri, Controlled Continuous ∗-g-Frames in Hilbert C∗- Modules, J. Pseudo-Differ. Oper. Appl. 15 (2024), 2. https://doi.org/10.1007/s11868-023-00571-1.
  11. A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. 33 (2025), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
  12. I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839–858. https://doi.org/10.2307/2372552.
  13. M.R. Kouchi, A. Nazari, Continuous g-Frame in Hilbert C∗-Modules, Abstr. Appl. Anal. 2011 (2011), 361595. https://doi.org/10.1155/2011/361595.
  14. A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert C∗-Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
  15. V.M. Manuilov, E.V. Troitsky, Hilbert C∗-Modules, Translations of Mathematical Monographs, Vol. 226, American Mathematical Society, Providence, Rhode Island, 2005.
  16. H. Massit, M. Rossafi, C. Park, Some Relations between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
  17. F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert C∗-Modules, Int. J. Anal. Appl. 19 (2021), 836–857. https://doi.org/10.28924/2291-8639-19-2021-836.
  18. W.L. Paschke, Inner Product Modules Over B∗-Algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. https://doi.org/10.2307/1996542.
  19. M. Rossafi, F. Nhari, Controlled K-g-Fusion Frames in Hilbert C∗-Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
  20. M. Rossafi, F. Nhari, K-g-Duals in Hilbert C∗-Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
  21. M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous G-Frames with C∗-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
  22. M. Rossafi, S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
  23. M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert C∗-Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
  24. M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. (2024). https://doi.org/10.1007/s41478-024-00869-3.
  25. M. Rossafi, S. Kabbaj, ∗-K-operator Frame for End∗A(H), Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
  26. M. Rossafi, S. Kabbaj, Operator Frame for End∗A(H), J. Linear Topol. Algebra 8 (2019), 85-95.
  27. M. Rossafi, S. Kabbaj, ∗-K-g-frames in Hilbert A-modules, J. Linear Topol. Algebra 7 (2018), 63-71.
  28. M. Rossafi, S. Kabbaj, ∗-g-frames in tensor products of Hilbert C∗-modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17-25.