Some New Versions of Various Inequalities over Trapezoidal Fuzzy Codomain

Main Article Content

Muhammad Bilal Khan, Patricia J. Y. Wong, Miguel Vivas Cortez, Nurnadiah Zamri, Loredana Ciurdariu

Abstract

Considerable attention has been given to Hölder's inequality, its extensions, and its reverse within the realms of differential equations and mathematical analysis. This study uses a new approach to find the novel version of Hölder's inequality by employing a fundamental analytical approach rooted in algebra and calculus known as trapezoidal fuzzy Hölder's inequality. With the help of Hölder's inequality, trapezoidal fuzzy Minkowski’s inequality and trapezoidal fuzzy Beckenbach’s inequality are also obtained. As specific examples of the inequalities mentioned earlier, our results illustrate various outcomes related to trapezoidal fuzzy Hölder's inequality. These outcomes show that the behavior of these inequalities is better than the classical results. For the validation of the results, some examples are also provided.

Article Details

References

  1. D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, Springer, Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1043-5.
  2. B. Benaissa, H. Budak, More on Reverse of Holder’s Integral Inequality, Korean J. Math. 28 (2020), 9–15. https://doi.org/10.11568/KJM.2020.28.1.9.
  3. A. Ojo, P.O. Olanipekun, Refinements of Generalised Hermite-Hadamard Inequality, Bull. Sci. Math. 188 (2023), 103316. https://doi.org/10.1016/j.bulsci.2023.103316.
  4. L. Nikolova, L.-E. Persson, S. Varošanec, Some New Refinements of the Young, Hölder, and Minkowski Inequalities, J. Inequal. Appl. 2023 (2023), 28. https://doi.org/10.1186/s13660-023-02934-0.
  5. H. Finner, A Generalization of Holder’s Inequality and Some Probability Inequalities, Ann. Probab. 20 (1992), 1893-1901. https://doi.org/10.1214/aop/1176989534.
  6. S. Abramorich, J. Pečarić, S. Varošanec, Continuous Sharpening of Hölder’s and Minkowski’s Inequality, Math. Inequal. Appl. 8 (2005), 179-190.
  7. R.B. Ash, Measure, Integration, and Functional Analysis, Academic Press, Cambridge, (2014).
  8. M.A. Ighachane, E.H. Benabdi, M. Akkouchi, A New Refinement of the Generalized Hölder’s Inequality with Applications, Proyecciones (Antofagasta) 41 (2022), 643–661. https://doi.org/10.22199/issn.0717-6279-4538.
  9. J. Tian, A New Refinement of Generalized Hölder’s Inequality and Its Application, J. Funct. Spaces Appl. 2013 (2013), 686404. https://doi.org/10.1155/2013/686404.
  10. J. Tian, Reversed Version of a Generalized Sharp Hölder’s Inequality and Its Applications, Inf. Sci. 201 (2012), 61–69. https://doi.org/10.1016/j.ins.2012.03.002.
  11. L. Frühwirth, J. Prochno, Hölder’s Inequality and Its Reverse—A Probabilistic Point of View, Math. Nachr. 296 (2023), 5493–5512. https://doi.org/10.1002/mana.202200411.
  12. J.M. Aldaz, A Stability Version of Hölder’s Inequality, J. Math. Anal. Appl. 343 (2008), 842–852. https://doi.org/10.1016/j.jmaa.2008.01.104.
  13. E.F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin, (1983).
  14. J.C. Bourin, E.-Y. Lee, M. Fujii, Y. Seo, A Matrix Reverse Hölder Inequality, Linear Algebra Appl. 431 (2009), 2154–2159. https://doi.org/10.1016/j.laa.2009.07.010.
  15. T.Y. Chen, C.-H. Li, Determining Objective Weights with Intuitionistic Fuzzy Entropy Measures: A Comparative Analysis, Inf. Sci. 180 (2010), 4207–4222. https://doi.org/10.1016/j.ins.2010.07.009.
  16. H. Agahi, R. Mesiar, Y. Ouyang, New General Extensions of Chebyshev Type Inequalities for Sugeno Integrals, Int. J. Approx. Reason. 51 (2009), 135–140. https://doi.org/10.1016/j.ijar.2009.09.006.
  17. H. Agahi, R. Mesiar, Y. Ouyang, Further Development of Chebyshev Type Inequalities for Sugeno Integrals and T-(S-) Evaluators, Kybernetika, 46 (2010), 83–95. https://eudml.org/doc/37711.
  18. H. Agahi, H. Román-Flores, A. Flores-Franulič, General Barnes–Godunova–Levin Type Inequalities for Sugeno Integral, Inf. Sci. 181 (2011), 1072–1079. https://doi.org/10.1016/j.ins.2010.11.029.
  19. A. Flores-Franulič, H. Román-Flores, A Chebyshev Type Inequality for Fuzzy Integrals, Appl. Math. Comput. 190 (2007), 1178–1184. https://doi.org/10.1016/j.amc.2007.02.143.
  20. K. Hu, On an Inequality and Its Applications, Sci. Sinica 24 (1981) 1047–1055.
  21. A. Khrennikov, Nonlocality as Well as Rejection of Realism Are Only Sufficient (but Non-Necessary!) Conditions for Violation of Bell’s Inequality, Inf. Sci. 179 (2009), 492–504. https://doi.org/10.1016/j.ins.2008.08.021.
  22. R. Mesiar, A. Mesiarová, Fuzzy Integrals and Linearity, Int. J. Approx. Reason. 47 (2008), 352–358. https://doi.org/10.1016/j.ijar.2007.05.013.
  23. R. Mesiar, Y. Ouyang, General Chebyshev Type Inequalities for Sugeno Integrals, Fuzzy Sets Syst. 160 (2009), 58–64. https://doi.org/10.1016/j.fss.2008.04.002.
  24. Y. Ouyang, R. Mesiar, On the Chebyshev Type Inequality for Seminormed Fuzzy Integral, Appl. Math. Lett. 22 (2009), 1810–1815. https://doi.org/10.1016/j.aml.2009.06.024.
  25. Y. Ouyang, R. Mesiar, Sugeno Integral and the Comonotone Commuting Property, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 465–480. https://doi.org/10.1142/S0218488509006091.
  26. Y. Ouyang, R. Mesiar, J. Li, On the Comonotonic-★-Property for Sugeno Integral, Appl. Math. Comput. 211 (2009), 450–458. https://doi.org/10.1016/j.amc.2009.01.067.
  27. H. Román-Flores, A. Flores-Franulic, Y. Chalco-Cano, The Fuzzy Integral for Monotone Functions, Appl. Math. Comput. 185 (2007), 492–498. https://doi.org/10.1016/j.amc.2006.07.066.
  28. H. Romanflores, A. Floresfranulic, Y. Chalcocano, A Jensen Type Inequality for Fuzzy Integrals, Inf. Sci. 177 (2007), 3192–3201. https://doi.org/10.1016/j.ins.2007.02.006.
  29. S.H. Wu, Generalization of a Sharp Hölder’s Inequality and Its Application, J. Math. Anal. Appl. 332 (2007), 741–750. https://doi.org/10.1016/j.jmaa.2006.10.019.
  30. Y. Li, H. Wu, Global Stability Analysis in Cohen–Grossberg Neural Networks with Delays and Inverse Hölder Neuron Activation Functions, Inf. Sci. 180 (2010), 4022–4030. https://doi.org/10.1016/j.ins.2010.06.033.
  31. U.M. Özkan, M.Z. Sarikaya, H. Yildirim, Extensions of Certain Integral Inequalities on Time Scales, Appl. Math. Lett. 21 (2008), 993–1000. https://doi.org/10.1016/j.aml.2007.06.008.
  32. R.P. Singh, R. Kumar, R.K. Tuteja, Application of Holder’s Inequality in Information Theory, Inf. Sci. 152 (2003), 145–154. https://doi.org/10.1016/S0020-0255(02)00300-6.
  33. M.B. Khan, P.O. Mohammed, M.A. Noor, Y.S. Hamed, New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities, Symmetry 13 (2021), 673. https://doi.org/10.3390/sym13040673.
  34. M.B. Khan, P.O. Mohammed, M.A. Noor, K.M. Abualnaja, Fuzzy Integral Inequalities on Coordinates of Convex Fuzzy Interval-Valued Functions, Math. Biosci. Eng. 18 (2021), 6552–6580. https://doi.org/10.3934/mbe.2021325.
  35. D. Zhao, T. An, G. Ye, W. Liu, Chebyshev Type Inequalities for Interval-Valued Functions, Fuzzy Sets Syst. 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006.
  36. D. Zhang, C. Guo, D. Chen, G. Wang, Jensen’s Inequalities for Set-Valued and Fuzzy Set-Valued Functions, Fuzzy Sets Syst. 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003.
  37. R. Goetschel, W. Voxman, Elementary Fuzzy Calculus, Fuzzy Sets Syst. 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6.
  38. P. Diamond, P.E. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, (1994).
  39. M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications, Springer, (2005).
  40. A. Khastan, R. Rodriguez-Lopez, Some Aspects on Computation of Scalar Valued and Fuzzy Valued Integrals over Fuzzy Domains, Iran. J. Fuzzy Syst. 20 (2023), 1-17. https://doi.org/10.22111/IJFS.2023.7635.
  41. M.B. Khan, J.L.G. Guirao, Riemann Liouville Fractional-like Integral Operators, Convex-like Real-Valued Mappings and Their Applications over Fuzzy Domain, Chaos Solitons Fractals 177 (2023), 114196. https://doi.org/10.1016/j.chaos.2023.114196.
  42. Y. Zhang, Multi-Slicing Strategy for the Three-Dimensional Discontinuity Layout Optimization (3D DLO), Int. J. Numer. Anal. Methods Geomech. 41 (2017), 488–507. https://doi.org/10.1002/nag.2566.
  43. Y. Zhang, X. Zhuang, A Softening-Healing Law for Self-Healing Quasi-Brittle Materials: Analyzing with Strong Discontinuity Embedded Approach, Eng. Fract. Mech. 192 (2018), 290–306. https://doi.org/10.1016/j.engfracmech.2017.12.018.
  44. Y. Zhang, X. Zhuang, Cracking Elements: A Self-Propagating Strong Discontinuity Embedded Approach for Quasi-Brittle Fracture, Finite Elements Anal. Design 144 (2018), 84–100. https://doi.org/10.1016/j.finel.2017.10.007.
  45. Y. Zhang, X. Zhuang, Cracking Elements Method for Dynamic Brittle Fracture, Theor. Appl. Fract. Mech. 102 (2019), 1–9. https://doi.org/10.1016/j.tafmec.2018.09.015.
  46. Y. Zhang, H.A. Mang, Global Cracking Elements: A Novel Tool for Galerkin‐based Approaches Simulating Quasi‐Brittle Fracture, Int. J. Numer. Methods Eng. 121 (2020), 2462–2480. https://doi.org/10.1002/nme.6315.
  47. Y. Zhang, X. Zhuang, R. Lackner, Stability Analysis of Shotcrete Supported Crown of NATM Tunnels with Discontinuity Layout Optimization, Int. J. Numer. Anal. Methods Geomech. 42 (2018), 1199–1216. https://doi.org/10.1002/nag.2775.
  48. Y. Zhang, M. Zeiml, C. Pichler, R. Lackner, Model-Based Risk Assessment of Concrete Spalling in Tunnel Linings under Fire Loading, Eng. Struct. 77 (2014), 207–215. https://doi.org/10.1016/j.engstruct.2014.02.033.
  49. Y. Zhang, R. Lackner, M. Zeiml, H. A. Mang, Strong Discontinuity Embedded Approach with Standard SOS Formulation: Element Formulation, Energy-Based Crack-Tracking Strategy, and Validations, Comput. Meth. Appl. Mech. Eng. 287 (2015), 335–366.
  50. Y. Zhang, Z. Gao, Y. Li, X. Zhuang, On the Crack Opening and Energy Dissipation in a Continuum Based Disconnected Crack Model, Finite Elem. Anal. Des. 170 (2020), 103333.
  51. Y. Zhang, X. Yang, X. Wang, X. Zhuang, A Micropolar Peridynamic Model with Non-Uniform Horizon for Static Damage of Solids Considering Different Nonlocal Enhancements, Theor. Appl. Fract. Mech. 113 (2021), 102930. https://doi.org/10.1016/j.tafmec.2021.102930.
  52. Y. Zhang, J. Huang, Y. Yuan, H.A. Mang, Cracking Elements Method with a Dissipation-Based Arc-Length Approach, Finite Elements Anal. Design 195 (2021), 103573. https://doi.org/10.1016/j.finel.2021.103573.
  53. Y. Zhang, Z. Gao, X. Wang, Q. Liu, Predicting the Pore-Pressure and Temperature of Fire-Loaded Concrete by a Hybrid Neural Network, Int. J. Comput. Methods 19 (2022), 2142011. https://doi.org/10.1142/S0219876221420111.
  54. Y. Zhang, X. Wang, X. Wang, H.A. Mang, Virtual Displacement Based Discontinuity Layout Optimization, Int. J. Numer. Methods Eng. 123 (2022), 5682–5694. https://doi.org/10.1002/nme.7084.
  55. Y. Zhang, Z. Gao, X. Wang, Q. Liu, Image Representations of Numerical Simulations for Training Neural Networks, Comput. Model. Eng. Sci. 134 (2023), 821–833. https://doi.org/10.32604/cmes.2022.022088.