Lower Characteristic and Essential Spectra

Main Article Content

Aref Jeribi

Abstract

In this paper, we show that a lower characteristic linear operator T acting on a Banach space, can be characterized by closed subspace. Some results concerning the essential spectra of the sum of the two bounded linear operators and the essential spectra of each of these operators, where their products are compacts operators on a Banach space X, are given.

Article Details

References

  1. S. Baraket, A. Jeribi, Lower Characteristic, Weakly Demicompact and Semi-Fredholm Linear Operators, Funct. Anal. Approx. Comput. 16 (2024), 31–39.
  2. J. Banas, J. Rivero, On Measures of Weak Noncompactness, Ann. Mat. Pura Appl. 151 (1988), 213–224. https://doi.org/10.1007/BF01762795.
  3. M. Berkani, M. Sarih, An Atkinson-Type Theorem for B-Fredholm Operators, Stud. Math. 148 (2001), 251–257. https://doi.org/10.4064/sm148-3-4.
  4. M. Berkani, M. Sarih, On Semi B-Fredholm Operators, Glasgow Math. J. 43 (2001), 457–465. https://doi.org/10.1017/S0017089501030075.
  5. M. Berkani, Index of B-Fredholm Operators and Generalization of a Weyl Theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723. https://doi.org/10.1090/S0002-9939-01-06291-8.
  6. W. Chaker, A. Jeribi, B. Krichen, Some Fredholm Theory Results Around Relative Demicompactness Concept, Commun. Korean Math. Soc. 36 (2021), 313–325. https://doi.org/10.4134/CKMS.C200215.
  7. K. Kuratowski, Topology, Hafner, New York, 1966.
  8. K. Astala, On Measures of Noncompactness and Ideal Variations in Banach Spaces, Suomalainen Tiedeakatemia, Helsinki, 1980.
  9. D.E. Edmunds, W.D. Evans, Spectral Theory and Differential Operators, Oxford University Press, Oxford, 1987.
  10. A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-17566-9.
  11. A. Jeribi, Denseness, Bases, and Frames in Banach Spaces and Applications, De Gruyter, Berlin, 2018.
  12. A. Jeribi, Perturbation Theory for Linear Operators: Denseness and Bases with Applications, Springer, Singapore, 2021.
  13. A. Jeribi, Problems in Finite Element Methods: Aubin Nitsche?s Duality Process, Nodal Methods and Friedrichs Systems, Springer, Singapore, 2024.
  14. C. Kuratowski, Sur Les Espaces Complets, Fund. Math. 15 (1930), 301–309. https://doi.org/10.4064/fm-15-1-301-309.
  15. A. Jeribi, B. Krichen, M. Salhi, Weak Demicompactness Involving Measures of Weak Noncompactness and Invariance of the Essential Spectrum, Filomat 36 (2022), 3051–3073. https://doi.org/10.2298/FIL2209051J.
  16. V. Muller, Spectral Theory of Linear Operators: And Spectral Systems in Banach Algebras, Springer, Basel, 2007.
  17. K. Latrach, A. Jeribi, Some Results on Fredholm Operators, Essential Spectra, and Application, J. Math. Anal. Appl. 225 (1998), 461–485. https://doi.org/10.1006/jmaa.1998.6038.
  18. M. Schechter, Principles of Functional Analysis, American Mathematical Society, Providence, 2002.
  19. A. Widder, Spectral Theory for Nonlinear Operators, Thesis, Vienna University of Technology, 2012.