Perovskite Solar Cell Optimization via Polynomial Differential Quadrature Analysis with Block Marching

Main Article Content

Waleed Mohammed Abdelfattah

Abstract

This paper introduces a novel numerical model for analyzing and optimizing the performance of perovskite solar cells, a technology with rapidly growing potential for high-efficiency energy conversion. The model focuses on a CH3NH3GeI3 absorber layer sandwiched between ZnO and PEDOT:PSS transport layers. It employs Poisson's and continuity equations, solved using the Polynomial Differential Quadrature (PDQ) method in conjunction with block marching and iterative techniques. This approach offers enhanced accuracy and computational efficiency compared to traditional methods, enabling more detailed device simulations. A MATLAB program is implemented to obtain numerical solutions, validated against experimental data and other numerical methods, demonstrating the model's reliability. A comprehensive parametric study is conducted to investigate the influence of critical parameters on the fill factor and efficiency of the solar cell. The results provide valuable, quantitatively precise insights for optimizing perovskite solar cell design, potentially accelerating the development of higher-performance, cost-effective solar energy solutions.

Article Details

References

  1. H.J. Snaith, A. Abate, J.M. Ball, et al. Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 5 (2014), 1511–1515. https://doi.org/10.1021/jz500113x.
  2. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and Hole Transport Layers Optimization by Numerical Simulation of a Perovskite Solar Cell, Solar Energy 181 (2019), 372–378. https://doi.org/10.1016/j.solener.2019.02.017.
  3. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Amer. Chem. Soc. 131 (2009), 6050–6051. https://doi.org/10.1021/ja809598r.
  4. D.Y. Son, S.G. Kim, J.Y. Seo, et al. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering, J. Amer. Chem. Soc. 140 (2018), 1358–1364. https://doi.org/10.1021/jacs.7b10430.
  5. M.A. Green, Y. Hishikawa, E.D. Dunlop, et al. Solar Cell Efficiency Tables (Version 51), Prog. Photovolt.: Res. Appl. 26 (2018), 3–12. https://doi.org/10.1002/pip.2978.
  6. H.S. Kim, C.R. Lee, J.H. Im, et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep. 2 (2012), 591. https://doi.org/10.1038/srep00591.
  7. A. Ahmed, K. Riaz, H. Mehmood, et al. Performance Optimization of CH3NH3Pb(I1-xBrx)3 Based Perovskite Solar Cells by Comparing Different ETL Materials through Conduction Band Offset Engineering, Opt. Mater. 105 (2020), 109897. https://doi.org/10.1016/j.optmat.2020.109897.
  8. Y.F. Makableh, G. Aljaiuossi, R. Al-Abed, Comprehensive Design Analysis of Electron Transmission Nanostructured Layers of Heterojunction Perovskite Solar Cells, Superlattices Microstruct. 130 (2019), 390–395. https://doi.org/10.1016/j.spmi.2019.05.017.
  9. V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General Working Principles of CH3 NH3 PbX3 Perovskite Solar Cells, Nano Lett. 14 (2014), 888–893. https://doi.org/10.1021/nl404252e.
  10. A.A. Kanoun, M.B. Kanoun, A.E. Merad, S. Goumri-Said, Toward Development of High-Performance Perovskite Solar Cells Based on CH3NH3GeI3 Using Computational Approach, Solar Energy 182 (2019), 237–244. https://doi.org/10.1016/j.solener.2019.02.041.
  11. X. Xu, H. Zhang, J. Shi, et al. Highly Efficient Planar Perovskite Solar Cells with a TiO2 /ZnO Electron Transport Bilayer, J. Mater. Chem. A 3 (2015), 19288–19293. https://doi.org/10.1039/C5TA04239A.
  12. P. Zhao, Z. Lin, J. Wang, et al. Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO2 Electron Transport Layer, ACS Appl. Energy Mater. 2 (2019), 4504–4512. https://doi.org/10.1021/acsaem.9b00755.
  13. G. Kumar, J. Kaur, R. Basu, Performance Analysis of Planar Heterojunction Perovskite Solar Cell Featuring Double Hole Transport Layer & Backplane, Silicon 14 (2022), 463–474. https://doi.org/10.1007/s12633-020-00820-8.
  14. E. Li, W. Li, L. Li, et al. Efficient p-i-n Structured Perovskite Solar Cells Employing Low-Cost and Highly Reproducible Oligomers as Hole Transporting Materials, Sci. China Chem. 62 (2019), 767–774. https://doi.org/10.1007/s11426-018-9452-9.
  15. M. Srivastava, K. Surana, S. Singh, et al. Highly Efficient Sandwich Structured Perovskite Solar Cell Using PEDOT:PSS in Room Ambient Conditions, Mater. Today: Proc. 34 (2021), 675–678. https://doi.org/10.1016/j.matpr.2020.03.329.
  16. J.P. Correa Baena, L. Steier, W. Tress, et al. Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering, Energy Environ. Sci. 8 (2015), 2928–2934. https://doi.org/10.1039/C5EE02608C.
  17. I. Alam, M.A. Ashraf, Effect of Different Device Parameters on Tin-Based Perovskite Solar Cell Coupled with In2 S3 Electron Transport Layer and CuSCN and Spiro-OMeTAD Alternative Hole Transport Layers for High-Efficiency Performance, Energy Sources Part A 46 (2024), 17080–17096. https://doi.org/10.1080/15567036.2020.1820628.
  18. S. Van Reenen, M. Kemerink, H.J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 6 (2015), 3808–3814. https://doi.org/10.1021/acs.jpclett.5b01645.
  19. P. Calado, A.M. Telford, D. Bryant, et al. Evidence for Ion Migration in Hybrid Perovskite Solar Cells with Minimal Hysteresis, Nat. Commun. 7 (2016), 13831. https://doi.org/10.1038/ncomms13831.
  20. S. Ravishankar, O. Almora, C. Echeverría-Arrondo, et al. Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells, J. Phys. Chem. Lett. 8 (2017), 915–921. https://doi.org/10.1021/acs.jpclett.7b00045.
  21. N.E. Courtier, G. Richardson, J.M. Foster, A Fast and Robust Numerical Scheme for Solving Models of Charge Carrier Transport and Ion Vacancy Motion in Perovskite Solar Cells, Appl. Math. Model. 63 (2018), 329–348. https://doi.org/10.1016/j.apm.2018.06.051.
  22. S. Zandi, M. Razaghi, Finite Element Simulation of Perovskite Solar Cell: A Study on Efficiency Improvement Based on Structural and Material Modification, Solar Energy 179 (2019), 298–306. https://doi.org/10.1016/j.solener.2018.12.032.
  23. O. Ragb, M. Mohamed, M.S. Matbuly, O. Civalek, An Accurate Numerical Approach for Studying Perovskite Solar Cells, Int. J. Energy Res. 45 (2021), 16456–16477. https://doi.org/10.1002/er.6892.
  24. O. Ragb, M. Mohamed, M.S. Matbuly, Vibration Analysis of Magneto-Electro-Thermo NanoBeam Resting on Nonlinear Elastic Foundation Using Sinc and Discrete Singular Convolution Differential Quadrature Method, Mod. Appl. Sci. 13 (2019), 49. https://doi.org/10.5539/mas.v13n7p49.
  25. C. Shu, Differential Quadrature and Its Application in Engineering, Springer, 2012. https://doi.org/10.1007/978-1-4471-0407-0.
  26. O. Ragb, M. Mohamed, M.S. Matbuly, Free Vibration of a Piezoelectric Nanobeam Resting on Nonlinear Winkler-Pasternak Foundation by Quadrature Methods, Heliyon 5 (2019), e01856. https://doi.org/10.1016/j.heliyon.2019.e01856.
  27. S.Z. Haider, H. Anwar, S. Manzoor, A.G. Ismail, M. Wang, A Theoretical Study for High-Performance Inverted p-i-n Architecture Perovskite Solar Cells with Cuprous Iodide as Hole Transport Material, Curr. Appl. Phys. 20 (2020), 1080–1089. https://doi.org/10.1016/j.cap.2020.06.022.
  28. J.A. Nelson, The Physics of Solar Cells, World Scientific, 2003. https://doi.org/10.1142/p276.
  29. C. Shu, Q. Yao, K.S. Yeo, Block-Marching in Time with DQ Discretization: An Efficient Method for Time-Dependent Problems, Comput. Methods Appl. Mech. Eng. 191 (2002), 4587–4597. https://doi.org/10.1016/S0045-7825(02)00387-0.