Soft Union Bi-quasi Ideals of Semigroup
Main Article Content
Abstract
Mathematicians attach importance to extending ideals in algebraic structures. The concept of bi-quasi (ƁԚ) ideal was introduced as a generalization version of quasi-ideal, bi-ideal, and left (right) ideals in semigroups. This paper applies this concept to soft set theory and semigroups, introducing the notion of "Soft union (S-uni) ƁԚ ideal." The aim of this paper is to explore the relationships between S-uni ƁԚ ideals and other types of S-uni ideals in semigroups. It is shown that every S-uni bi-ideal, S-uni ideal, S-uni quasi-ideal, and S-uni interior ideal of an idempotent soft set are S-uni ƁԚ ideals. Counterexamples demonstrate that the converses are not always true unless the semigroup is special soft simple or regular. For special soft simple semigroups, the S-uni ƁԚ ideal coincides with the S-uni bi-ideal, S-uni left (right) ideal, and S-uni quasi-ideal. Additionally, we provide conceptual definitions and analyses of the new concept in the context of soft set operations, supporting our claims with clear examples.
Article Details
References
- R.A. Good, D.R. Hughes, Associated Groups for a Semigroup, Bull Amer Math Soc. 58 (1952), 624–625.
- O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen 4 (1956), 262–275.
- S. Lajos, (m;k;n)-Ideals in Semigroups, in : Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest. (1976), No. 1, 12–19.
- G. Szasz, Interior Ideals in Semigroups, in: Notes on semigroups IV, Karl Marx Univ. Econ., Dept. Math. Budapest (1977), No. 5, 1–7.
- G. Szasz, Remark on Interior Ideals of Semigroups, Stud. Sci. Math. Hung. 16 (1981), 61–63.
- M.M.K. Rao, Bi-quasi Ideals and Fuzzy Bi-quasi Ideals of Semigroups, Bull. Int. Math. Virtual Inst. 7 (2017), 231-242.
- M.M.K. Rao, A Study of a Generalization of Bi-Ideal, Quasi Ideal and Interior Ideal of Semigroup, Math. Morav. 22 (2018), 103–115. https://doi.org/10.5937/MatMor1802103M.
- M.M.K. Rao, Left bi-quasi ideals of semigroups, Southeast Asian Bull. Math. 44 (2020), 369–376.
- M.M.K. Rao, Quasi-interior Ideals and Weak-Interior Ideals, Asia Pac. J. Math. 7 (2020), 21. https://doi.org/10.28924/APJM/7-21.
- S. Baupradist, B. Chemat, K. Palanivel, R. Chinram, Essential Ideals and Essential Fuzzy Ideals in Semigroups, J. Discrete Math. Sci. Cryptogr. 24 (2021), 223–233. https://doi.org/10.1080/09720529.2020.1816643.
- O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum 20 (1980), 233–240. https://doi.org/10.1007/BF02572683.
- S. Bogdanovic, Semigroups in Which Some Bi-ideal is a Group, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. Novi Sad 11 (1981), 261–266.
- K. Wattanatripop, R. Chinram, T. Changphas, Quasi- A -Ideals and Fuzzy A -Ideals in Semigroups, J. Discr. Math. Sci. Cryptogr. 21 (2018), 1131–1138. https://doi.org/10.1080/09720529.2018.1468608.
- N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discr. Math. Sci. Cryptogr. 23 (2020), 773–778. https://doi.org/10.1080/09720529.2019.1696917.
- A. Iampan, R. Chinram, P. Petchkaew, A Note on Almost Subsemigroups of Semigroups, Int. J. Math. Comput. Sci. 16 (2021), 1623–1629.
- R. Chinram, W. Nakkhasen, Almost Bi-Quasi-Interior Ideals and Fuzzy Almost Bi-Quasi-Interior Ideals of Semigroups, J. Math. Comput. Sci. 26 (2021), 128–136. https://doi.org/10.22436/jmcs.026.02.03.
- T. Gaketem, Almost Bi-Interior Ideal in Semigroups and Their Fuzzifications, Eur. J. Pure Appl. Math. 15 (2022), 281–289. https://doi.org/10.29020/nybg.ejpam.v15i1.4279.
- G. Thiti, C. Ronnason, Almost Bi-Quasi-Ideals and Their Fuzzifications in Semigroups, Ann. Univ. Craiova Math. Comput. Sci. Ser. 50 (2023), 342–352. https://doi.org/10.52846/ami.v50i2.1708.
- K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy Almost Bi-Ideals in Semigroups, Int. J. Math. Comput. Sci. 13 (2018), 51–58.
- W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, A Note on Fuzzy Almost Interior Ideals in Semigroups, Int. J. Math. Comput. Sci. 16 (2021), 803–808.
- D. Molodtsov, Soft Set Theory—First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5.
- P.K. Maji, R. Biswas, A.R. Roy, Soft Set Theory, Comput. Math. Appl. 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6.
- D. Pei, D. Miao, From Soft Sets to Information Systems, in: 2005 IEEE International Conference on Granular Computing, IEEE, Beijing, China, 2005: pp. 617-621. https://doi.org/10.1109/GRC.2005.1547365.
- M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On Some New Operations in Soft Set Theory, Comput. Math. Appl. 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009.
- A. Sezgin, A.O. Atagün, On Operations of Soft Sets, Comput. Math. Appl. 61 (2011), 1457–1467. https://doi.org/10.1016/j.camwa.2011.01.018.
- M.I. Ali, M. Shabir, M. Naz, Algebraic Structures of Soft Sets Associated with New Operations, Comput. Math. Appl. 61 (2011), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011.
- A. Sezgin, K. Dagtoros, Complementary Soft Binary Piecewise Symmetric Difference Operation: A Novel Soft Set Operation, Sci. J. Mehmet Akif Ersoy Univ. 6 (2023), 31–45.
- A. Sezgin, N. Çağman, A.O. Atagün, F.N. Aybek, Complemental Binary Operations of Sets and Their Application to Group Theory, Matrix Sci. Math. 7 (2023), 114–121. https://doi.org/10.26480/msmk.02.2023.114.121.
- A. Sezgin, F.N. Aybek, A.O. Atagün, A New Soft Set Operation: Complementary Soft Binary Piecewise Intersection (∩) Operation, Black Sea J. Eng. Sci. 6 (2023), 330–346. https://doi.org/10.34248/bsengineering.1319873.
- A. Sezgin, F. Nur Aybek, N. Bilgili Güngör, A New Soft Set Operation: Complementary Soft Binary Piecewise Union (∪) Operation, Acta Inform. Malaysia 7 (2023), 38–53. https://doi.org/10.26480/aim.01.2023.38.53.
- A. Sezgin, E. Yavuz, Soft Binary Piecewise Plus Operation: A New Type of Operation for Soft Sets, Uncertain. Discourse Appl. 1 (2024), 79–100.
- A. Sezgi̇N, E. Yavuz, A New Soft Set Operation: Complementary Soft Binary Piecewise Lamda (λ) Operation, Sinop Univ. J. Nat. Sci. 8 (2023), 101–133. https://doi.org/10.33484/sinopfbd.1320420.
- A. Sezgi̇N, E. Yavuz, A New Soft Set Operation: Soft Binary Piecewise Symmetric Difference Operation, Necmettin Erbakan Univ. J. Sci. Eng. 5 (2023), 189–208. https://doi.org/10.47112/neufmbd.2023.18.
- A. Sezgin, M. Sarıalioğlu, A New Soft Set Operation: Complementary Soft Binary Piecewise Theta (θ) Operation, J. Kadirli Fac. Appl. Sci. 4 (2024), 325-357.
- A. Sezgi̇N, N. Cagman, A New Soft Set Operation: Complementary Soft Binary Piecewise Difference () Operation, Osmaniye Korkut Ata Univ. J. Inst. Sci. Technol. 7 (2024), 58–94. https://doi.org/10.47495/okufbed.1308379.
- A. Sezgi̇N, H. Çalişici, A Comprehensive Study on Soft Binary Piecewise Difference Operation, Eskişehir Tech. Univ. J. Sci. Technol. B Theor. Sci. 12 (2024), 32–54. https://doi.org/10.20290/estubtdb.1356881.
- N. Çağman, S. Enginoğlu, Soft Set Theory and Uni–Int Decision Making, Eur. J. Oper. Res. 207 (2010), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004.
- N. Çağman, F. Çıtak, H. Aktaş, Soft Int-Group and Its Applications to Group Theory, Neural Comput. Appl. 21 (2012), 151–158. https://doi.org/10.1007/s00521-011-0752-x.
- A. Sezgin, A New Approach to Semigroup Theory I: Soft Union Semigroups, Ideals and Bi-Ideals, Algebra Lett. 2016 (2016), 3.
- A. Sezgin, N. Çağman, A.O. Atagün, Soft Intersection Interior Ideals, Quasi-ideals and Generalized Bi-Ideals; A New Approach to Semigroup Theory II, J. Multiple-Valued Logic Soft Comput. 23 (2014), 161-207.
- A.S. Sezer, N. Çağman, A.O. Atagün, A Novel Characterization for Certain Semigroups by Soft Union Ideals, Inf. Sci. Lett. 4 (2015), 13-20.
- A. Sezgin, Completely Weakly, Quasi-Regular Semigroups Characterized by Soft Union Quasi Ideals, (Generalized) Bi-Ideals and Semiprime Ideals, Sigma J. Eng. Nat. Sci. 41 (2023), 868−874. https://doi.org/10.14744/sigma.2023.00093.
- A. Sezgin, A. İlgin, Soft Intersection Almost Subsemigroups of Semigroups, Int. J. Math. Phys. 15 (2024), 13–20. https://doi.org/10.26577/ijmph.2024v15i1a2.
- A. Sezgin, A. İlgin, Soft Intersection Almost Ideals of Semigroups, J. Innov. Eng. Nat. Sci. 4 (2024), 466–481. https://doi.org/10.61112/jiens.1464344.
- A. Sezgin, B. Onur, Soft Intersection Almost Bi-ideals of Semigroups, Syst. Anal. 2 (2024), 95-105. https://doi.org/10.31181/sa21202415.
- A. Sezgin, Z.H. Baş, Soft-Int Almost Interior Ideals for Semigroups, Inf. Sci. Appl. 4 (2024), 25–36. https://doi.org/10.61356/j.iswa.2024.4374.
- A. Sezgin, F.Z. Kocakaya, Soft Intersection Almost Quasi-Ideals of Semigroups, Songklanakarin J. Sci. Technol. in Press.
- A. Sezgin, A. İLgin, Soft Intersection Almost Weak-Interior Ideals of Semigroups: A Theoretical Study, J. Nat. Sci. Math. UT 9 (2024), 372–385. https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2834.
- A. Sezgin, A. İlgin, Soft Intersection Almost Bi-Interior Ideals of Semigroups, J. Nat. Appl. Sci. Pak. 6 (2024), 1619-1638.
- A. Sezgin, A. İlgin, Soft Intersection Almost Bi-Quasi Ideals of Semigroups, Soft Comput. Fusion Appl. 1 (2024), 27–42. https://doi.org/10.22105/scfa.v1i1.26.
- A. Sezgin, F.Z. Kocakaya, A. İlgin, Soft Intersection Almost Quasi-Interior Ideals of Semigroups, Eskişeh. Tech. Univ. J. Sci. Technol. B – Theor. Sci. 12 (2024), 81–99. https://doi.org/10.20290/estubtdb.1473840.
- A. SEZGİN, Z. BAŞ, A. İlgin, Soft Intersection Almost Bi-Quasi-Interior Ideals of Semigroups, J. Fuzzy Ext. Appl. 6 (2025), 43-58. https://doi.org/10.22105/jfea.2024.452790.1445.
- A. Sezgin, B. Onur, A. İlgin, Soft Intersection Almost Tri-Ideals of Semigroups, SciNexuses 1 (2024), 126–138. https://doi.org/10.61356/j.scin.2024.1414.
- A. Sezgin, A. İlgin, A.O. Atagün, Soft Intersection Almost Tri-bi-ideals of Semigroups, Sci. Technol. Asia. 29 (2024), 1-13.
- H. Aktaş, N. Çağman, Soft Sets and Soft Groups, Inf. Sci. 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008.
- F. Feng, Y.B. Jun, X. Zhao, Soft Semirings, Comput. Math. Appl. 56 (2008), 2621–2628. https://doi.org/10.1016/j.camwa.2008.05.011.
- U. Acar, F. Koyuncu, B. Tanay, Soft Sets and Soft Rings, Comput. Math. Appl. 59 (2010), 3458–3463. https://doi.org/10.1016/j.camwa.2010.03.034.
- İ. Taştekin, A. Sezgin, P-Properties in Near-Rings, J. Math. Fund. Sci. 51 (2019), 152–167. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.5.
- T. Manikantan, Soft Quasi-Ideals of Soft near-Rings, Sigma J. Eng. Nat. Sci. 41 (2023), 565-574. https://doi.org/10.14744/sigma.2023.00062.
- A.S. Sezer, A New Approach to LA-Semigroup Theory via the Soft Sets, J. Intell. Fuzzy Syst. 26 (2014), 2483–2495. https://doi.org/10.3233/IFS-130918.
- A.S. Sezer, Certain Characterizations of LA-Semigroups by Soft Sets, J. Intell. Fuzzy Syst. 27 (2014), 1035–1046. https://doi.org/10.3233/IFS-131064.
- A. Khan, M. Izhar, A. Sezgin, Characterizations of Abel Grassmann’s Groupoids by the Properties of Double-Framed Soft Ideals, Int. J. Anal. Appl. 15 (2017), 62-74.
- M. Gulistan, F. Feng, M. Khan, A. Sezgin, Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets, Mathematics 6 (2018), 293. https://doi.org/10.3390/math6120293.
- A.O. Atagün, A.S. Sezer, Soft Sets, Soft Semimodules and Soft Substructures of Semimodules, Math. Sci. Lett. 4 (2015), 235-242.
- A.O. Atagun, A. Sezgin, Int-Soft Substructures of Groups and Semirings with Applications, Appl. Math. Inf. Sci. 11 (2017), 105–113. https://doi.org/10.18576/amis/110113.
- A. Sezgin, N. Çağman, A.O. Atagün, A Completely New View to Soft Intersection Rings via Soft Uni-Int Product, Appl. Soft Comput. 54 (2017), 366–392. https://doi.org/10.1016/j.asoc.2016.10.004.
- A.S. Sezer, A.O. Atagün, N. Çağman, N-Group SI-Action and Its Applications to N-Group Theory, Fasc. Math. 52 (2014), 139-153.
- A.O. Atagun, A. Sezgin, Soft Subnear-Rings, Soft Ideals and Soft N-Subgroups of Near-Rings, Math. Sci. Lett. 7 (2018), 37–42. https://doi.org/10.18576/msl/070106.
- A. Sezgin, A New View on AG-Groupoid Theory via Soft Sets for Uncertainty Modeling, Filomat 32 (2018), 2995–3030. https://doi.org/10.2298/FIL1808995S.
- C. Jana, M. Pal, F. Karaaslan, et al. (α,β)-Soft Intersectional Rings and Ideals with Their Applications, New Math. Nat. Comput. 15 (2019), 333–350. https://doi.org/10.1142/S1793005719500182.
- Ş. Özlü, A. Sezgin, Soft Covered Ideals in Semigroups, Acta Univ. Sapientiae Math. 12 (2020), 317–346. https://doi.org/10.2478/ausm-2020-0023.
- A. Sezgin, A.O. Atagün, N. Çağman, et al. On Near-Rings with Soft Union Ideals and Applications, New Math. Nat. Comput. 18 (2022), 495–511. https://doi.org/10.1142/S1793005722500247.
- M.M.K. Rao, B. Venkateswarlu, N. Rafi, Left Bi-Quasi Ideals of Γ-Semirings, Asia Pac. J. Math. 4 (2017), 144-153.
- M.M.K. Rao, Left Bi-Quasi Ideals of Semirings, Bull. Int. Math. Virtual Inst. 8 (2018), 45-53.
- M.M.K. Rao, Fuzzy Left and Right Bi-Quasi Ideals of Semiring, Bull. Int. Math. Virtual Inst. 8 (2018), 449-460.
- A. Sezgin, and A. İlgin, Soft Union Bi-Interior Ideals of Semigroups, Int. J. Appl. Pure. Sci. in Press.