Soft Union Bi-quasi Ideals of Semigroup

Main Article Content

Beyza Onur, Aslıhan Sezgin, Thiti Gaketem

Abstract

Mathematicians attach importance to extending ideals in algebraic structures. The concept of bi-quasi (ƁԚ) ideal was introduced as a generalization version of quasi-ideal, bi-ideal, and left (right) ideals in semigroups. This paper applies this concept to soft set theory and semigroups, introducing the notion of "Soft union (S-uni) ƁԚ ideal." The aim of this paper is to explore the relationships between S-uni ƁԚ ideals and other types of S-uni ideals in semigroups. It is shown that every S-uni bi-ideal, S-uni ideal, S-uni quasi-ideal, and S-uni interior ideal of an idempotent soft set are S-uni ƁԚ ideals. Counterexamples demonstrate that the converses are not always true unless the semigroup is special soft simple or regular. For special soft simple semigroups, the S-uni ƁԚ ideal coincides with the S-uni bi-ideal, S-uni left (right) ideal, and S-uni quasi-ideal. Additionally, we provide conceptual definitions and analyses of the new concept in the context of soft set operations, supporting our claims with clear examples.

Article Details

References

  1. R.A. Good, D.R. Hughes, Associated Groups for a Semigroup, Bull Amer Math Soc. 58 (1952), 624–625.
  2. O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen 4 (1956), 262–275.
  3. S. Lajos, (m;k;n)-Ideals in Semigroups, in : Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest. (1976), No. 1, 12–19.
  4. G. Szasz, Interior Ideals in Semigroups, in: Notes on semigroups IV, Karl Marx Univ. Econ., Dept. Math. Budapest (1977), No. 5, 1–7.
  5. G. Szasz, Remark on Interior Ideals of Semigroups, Stud. Sci. Math. Hung. 16 (1981), 61–63.
  6. M.M.K. Rao, Bi-quasi Ideals and Fuzzy Bi-quasi Ideals of Semigroups, Bull. Int. Math. Virtual Inst. 7 (2017), 231-242.
  7. M.M.K. Rao, A Study of a Generalization of Bi-Ideal, Quasi Ideal and Interior Ideal of Semigroup, Math. Morav. 22 (2018), 103–115. https://doi.org/10.5937/MatMor1802103M.
  8. M.M.K. Rao, Left bi-quasi ideals of semigroups, Southeast Asian Bull. Math. 44 (2020), 369–376.
  9. M.M.K. Rao, Quasi-interior Ideals and Weak-Interior Ideals, Asia Pac. J. Math. 7 (2020), 21. https://doi.org/10.28924/APJM/7-21.
  10. S. Baupradist, B. Chemat, K. Palanivel, R. Chinram, Essential Ideals and Essential Fuzzy Ideals in Semigroups, J. Discrete Math. Sci. Cryptogr. 24 (2021), 223–233. https://doi.org/10.1080/09720529.2020.1816643.
  11. O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum 20 (1980), 233–240. https://doi.org/10.1007/BF02572683.
  12. S. Bogdanovic, Semigroups in Which Some Bi-ideal is a Group, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. Novi Sad 11 (1981), 261–266.
  13. K. Wattanatripop, R. Chinram, T. Changphas, Quasi- A -Ideals and Fuzzy A -Ideals in Semigroups, J. Discr. Math. Sci. Cryptogr. 21 (2018), 1131–1138. https://doi.org/10.1080/09720529.2018.1468608.
  14. N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discr. Math. Sci. Cryptogr. 23 (2020), 773–778. https://doi.org/10.1080/09720529.2019.1696917.
  15. A. Iampan, R. Chinram, P. Petchkaew, A Note on Almost Subsemigroups of Semigroups, Int. J. Math. Comput. Sci. 16 (2021), 1623–1629.
  16. R. Chinram, W. Nakkhasen, Almost Bi-Quasi-Interior Ideals and Fuzzy Almost Bi-Quasi-Interior Ideals of Semigroups, J. Math. Comput. Sci. 26 (2021), 128–136. https://doi.org/10.22436/jmcs.026.02.03.
  17. T. Gaketem, Almost Bi-Interior Ideal in Semigroups and Their Fuzzifications, Eur. J. Pure Appl. Math. 15 (2022), 281–289. https://doi.org/10.29020/nybg.ejpam.v15i1.4279.
  18. G. Thiti, C. Ronnason, Almost Bi-Quasi-Ideals and Their Fuzzifications in Semigroups, Ann. Univ. Craiova Math. Comput. Sci. Ser. 50 (2023), 342–352. https://doi.org/10.52846/ami.v50i2.1708.
  19. K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy Almost Bi-Ideals in Semigroups, Int. J. Math. Comput. Sci. 13 (2018), 51–58.
  20. W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, A Note on Fuzzy Almost Interior Ideals in Semigroups, Int. J. Math. Comput. Sci. 16 (2021), 803–808.
  21. D. Molodtsov, Soft Set Theory—First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5.
  22. P.K. Maji, R. Biswas, A.R. Roy, Soft Set Theory, Comput. Math. Appl. 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6.
  23. D. Pei, D. Miao, From Soft Sets to Information Systems, in: 2005 IEEE International Conference on Granular Computing, IEEE, Beijing, China, 2005: pp. 617-621. https://doi.org/10.1109/GRC.2005.1547365.
  24. M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On Some New Operations in Soft Set Theory, Comput. Math. Appl. 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009.
  25. A. Sezgin, A.O. Atagün, On Operations of Soft Sets, Comput. Math. Appl. 61 (2011), 1457–1467. https://doi.org/10.1016/j.camwa.2011.01.018.
  26. M.I. Ali, M. Shabir, M. Naz, Algebraic Structures of Soft Sets Associated with New Operations, Comput. Math. Appl. 61 (2011), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011.
  27. A. Sezgin, K. Dagtoros, Complementary Soft Binary Piecewise Symmetric Difference Operation: A Novel Soft Set Operation, Sci. J. Mehmet Akif Ersoy Univ. 6 (2023), 31–45.
  28. A. Sezgin, N. Çağman, A.O. Atagün, F.N. Aybek, Complemental Binary Operations of Sets and Their Application to Group Theory, Matrix Sci. Math. 7 (2023), 114–121. https://doi.org/10.26480/msmk.02.2023.114.121.
  29. A. Sezgin, F.N. Aybek, A.O. Atagün, A New Soft Set Operation: Complementary Soft Binary Piecewise Intersection (∩) Operation, Black Sea J. Eng. Sci. 6 (2023), 330–346. https://doi.org/10.34248/bsengineering.1319873.
  30. A. Sezgin, F. Nur Aybek, N. Bilgili Güngör, A New Soft Set Operation: Complementary Soft Binary Piecewise Union (∪) Operation, Acta Inform. Malaysia 7 (2023), 38–53. https://doi.org/10.26480/aim.01.2023.38.53.
  31. A. Sezgin, E. Yavuz, Soft Binary Piecewise Plus Operation: A New Type of Operation for Soft Sets, Uncertain. Discourse Appl. 1 (2024), 79–100.
  32. A. Sezgi̇N, E. Yavuz, A New Soft Set Operation: Complementary Soft Binary Piecewise Lamda (λ) Operation, Sinop Univ. J. Nat. Sci. 8 (2023), 101–133. https://doi.org/10.33484/sinopfbd.1320420.
  33. A. Sezgi̇N, E. Yavuz, A New Soft Set Operation: Soft Binary Piecewise Symmetric Difference Operation, Necmettin Erbakan Univ. J. Sci. Eng. 5 (2023), 189–208. https://doi.org/10.47112/neufmbd.2023.18.
  34. A. Sezgin, M. Sarıalioğlu, A New Soft Set Operation: Complementary Soft Binary Piecewise Theta (θ) Operation, J. Kadirli Fac. Appl. Sci. 4 (2024), 325-357.
  35. A. Sezgi̇N, N. Cagman, A New Soft Set Operation: Complementary Soft Binary Piecewise Difference () Operation, Osmaniye Korkut Ata Univ. J. Inst. Sci. Technol. 7 (2024), 58–94. https://doi.org/10.47495/okufbed.1308379.
  36. A. Sezgi̇N, H. Çalişici, A Comprehensive Study on Soft Binary Piecewise Difference Operation, Eskişehir Tech. Univ. J. Sci. Technol. B Theor. Sci. 12 (2024), 32–54. https://doi.org/10.20290/estubtdb.1356881.
  37. N. Çağman, S. Enginoğlu, Soft Set Theory and Uni–Int Decision Making, Eur. J. Oper. Res. 207 (2010), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004.
  38. N. Çağman, F. Çıtak, H. Aktaş, Soft Int-Group and Its Applications to Group Theory, Neural Comput. Appl. 21 (2012), 151–158. https://doi.org/10.1007/s00521-011-0752-x.
  39. A. Sezgin, A New Approach to Semigroup Theory I: Soft Union Semigroups, Ideals and Bi-Ideals, Algebra Lett. 2016 (2016), 3.
  40. A. Sezgin, N. Çağman, A.O. Atagün, Soft Intersection Interior Ideals, Quasi-ideals and Generalized Bi-Ideals; A New Approach to Semigroup Theory II, J. Multiple-Valued Logic Soft Comput. 23 (2014), 161-207.
  41. A.S. Sezer, N. Çağman, A.O. Atagün, A Novel Characterization for Certain Semigroups by Soft Union Ideals, Inf. Sci. Lett. 4 (2015), 13-20.
  42. A. Sezgin, Completely Weakly, Quasi-Regular Semigroups Characterized by Soft Union Quasi Ideals, (Generalized) Bi-Ideals and Semiprime Ideals, Sigma J. Eng. Nat. Sci. 41 (2023), 868−874. https://doi.org/10.14744/sigma.2023.00093.
  43. A. Sezgin, A. İlgin, Soft Intersection Almost Subsemigroups of Semigroups, Int. J. Math. Phys. 15 (2024), 13–20. https://doi.org/10.26577/ijmph.2024v15i1a2.
  44. A. Sezgin, A. İlgin, Soft Intersection Almost Ideals of Semigroups, J. Innov. Eng. Nat. Sci. 4 (2024), 466–481. https://doi.org/10.61112/jiens.1464344.
  45. A. Sezgin, B. Onur, Soft Intersection Almost Bi-ideals of Semigroups, Syst. Anal. 2 (2024), 95-105. https://doi.org/10.31181/sa21202415.
  46. A. Sezgin, Z.H. Baş, Soft-Int Almost Interior Ideals for Semigroups, Inf. Sci. Appl. 4 (2024), 25–36. https://doi.org/10.61356/j.iswa.2024.4374.
  47. A. Sezgin, F.Z. Kocakaya, Soft Intersection Almost Quasi-Ideals of Semigroups, Songklanakarin J. Sci. Technol. in Press.
  48. A. Sezgin, A. İLgin, Soft Intersection Almost Weak-Interior Ideals of Semigroups: A Theoretical Study, J. Nat. Sci. Math. UT 9 (2024), 372–385. https://doi.org/10.62792/ut.jnsm.v9.i17-18.p2834.
  49. A. Sezgin, A. İlgin, Soft Intersection Almost Bi-Interior Ideals of Semigroups, J. Nat. Appl. Sci. Pak. 6 (2024), 1619-1638.
  50. A. Sezgin, A. İlgin, Soft Intersection Almost Bi-Quasi Ideals of Semigroups, Soft Comput. Fusion Appl. 1 (2024), 27–42. https://doi.org/10.22105/scfa.v1i1.26.
  51. A. Sezgin, F.Z. Kocakaya, A. İlgin, Soft Intersection Almost Quasi-Interior Ideals of Semigroups, Eskişeh. Tech. Univ. J. Sci. Technol. B – Theor. Sci. 12 (2024), 81–99. https://doi.org/10.20290/estubtdb.1473840.
  52. A. SEZGİN, Z. BAŞ, A. İlgin, Soft Intersection Almost Bi-Quasi-Interior Ideals of Semigroups, J. Fuzzy Ext. Appl. 6 (2025), 43-58. https://doi.org/10.22105/jfea.2024.452790.1445.
  53. A. Sezgin, B. Onur, A. İlgin, Soft Intersection Almost Tri-Ideals of Semigroups, SciNexuses 1 (2024), 126–138. https://doi.org/10.61356/j.scin.2024.1414.
  54. A. Sezgin, A. İlgin, A.O. Atagün, Soft Intersection Almost Tri-bi-ideals of Semigroups, Sci. Technol. Asia. 29 (2024), 1-13.
  55. H. Aktaş, N. Çağman, Soft Sets and Soft Groups, Inf. Sci. 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008.
  56. F. Feng, Y.B. Jun, X. Zhao, Soft Semirings, Comput. Math. Appl. 56 (2008), 2621–2628. https://doi.org/10.1016/j.camwa.2008.05.011.
  57. U. Acar, F. Koyuncu, B. Tanay, Soft Sets and Soft Rings, Comput. Math. Appl. 59 (2010), 3458–3463. https://doi.org/10.1016/j.camwa.2010.03.034.
  58. İ. Taştekin, A. Sezgin, P-Properties in Near-Rings, J. Math. Fund. Sci. 51 (2019), 152–167. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.5.
  59. T. Manikantan, Soft Quasi-Ideals of Soft near-Rings, Sigma J. Eng. Nat. Sci. 41 (2023), 565-574. https://doi.org/10.14744/sigma.2023.00062.
  60. A.S. Sezer, A New Approach to LA-Semigroup Theory via the Soft Sets, J. Intell. Fuzzy Syst. 26 (2014), 2483–2495. https://doi.org/10.3233/IFS-130918.
  61. A.S. Sezer, Certain Characterizations of LA-Semigroups by Soft Sets, J. Intell. Fuzzy Syst. 27 (2014), 1035–1046. https://doi.org/10.3233/IFS-131064.
  62. A. Khan, M. Izhar, A. Sezgin, Characterizations of Abel Grassmann’s Groupoids by the Properties of Double-Framed Soft Ideals, Int. J. Anal. Appl. 15 (2017), 62-74.
  63. M. Gulistan, F. Feng, M. Khan, A. Sezgin, Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets, Mathematics 6 (2018), 293. https://doi.org/10.3390/math6120293.
  64. A.O. Atagün, A.S. Sezer, Soft Sets, Soft Semimodules and Soft Substructures of Semimodules, Math. Sci. Lett. 4 (2015), 235-242.
  65. A.O. Atagun, A. Sezgin, Int-Soft Substructures of Groups and Semirings with Applications, Appl. Math. Inf. Sci. 11 (2017), 105–113. https://doi.org/10.18576/amis/110113.
  66. A. Sezgin, N. Çağman, A.O. Atagün, A Completely New View to Soft Intersection Rings via Soft Uni-Int Product, Appl. Soft Comput. 54 (2017), 366–392. https://doi.org/10.1016/j.asoc.2016.10.004.
  67. A.S. Sezer, A.O. Atagün, N. Çağman, N-Group SI-Action and Its Applications to N-Group Theory, Fasc. Math. 52 (2014), 139-153.
  68. A.O. Atagun, A. Sezgin, Soft Subnear-Rings, Soft Ideals and Soft N-Subgroups of Near-Rings, Math. Sci. Lett. 7 (2018), 37–42. https://doi.org/10.18576/msl/070106.
  69. A. Sezgin, A New View on AG-Groupoid Theory via Soft Sets for Uncertainty Modeling, Filomat 32 (2018), 2995–3030. https://doi.org/10.2298/FIL1808995S.
  70. C. Jana, M. Pal, F. Karaaslan, et al. (α,β)-Soft Intersectional Rings and Ideals with Their Applications, New Math. Nat. Comput. 15 (2019), 333–350. https://doi.org/10.1142/S1793005719500182.
  71. Ş. Özlü, A. Sezgin, Soft Covered Ideals in Semigroups, Acta Univ. Sapientiae Math. 12 (2020), 317–346. https://doi.org/10.2478/ausm-2020-0023.
  72. A. Sezgin, A.O. Atagün, N. Çağman, et al. On Near-Rings with Soft Union Ideals and Applications, New Math. Nat. Comput. 18 (2022), 495–511. https://doi.org/10.1142/S1793005722500247.
  73. M.M.K. Rao, B. Venkateswarlu, N. Rafi, Left Bi-Quasi Ideals of Γ-Semirings, Asia Pac. J. Math. 4 (2017), 144-153.
  74. M.M.K. Rao, Left Bi-Quasi Ideals of Semirings, Bull. Int. Math. Virtual Inst. 8 (2018), 45-53.
  75. M.M.K. Rao, Fuzzy Left and Right Bi-Quasi Ideals of Semiring, Bull. Int. Math. Virtual Inst. 8 (2018), 449-460.
  76. A. Sezgin, and A. İlgin, Soft Union Bi-Interior Ideals of Semigroups, Int. J. Appl. Pure. Sci. in Press.