A State-Dependent Dynamic Nonlinear Problems on Time Scales

Main Article Content

Muhanna Ali H. Alrashdi, Ahmed A. El-Deeb, Reda Gamal Ahmed

Abstract

Considering the phenomena that depend on their past state or past history, it was noted that they were given more importance. The mathematical models of these phenomena can be explained by state-dependent differential equations or a self-referred type. This article is dedicated to studying the solvability of state-dependent or self-referred dynamic nonlinear problems on time scales. Here, we got the existence of at least one solution to state-dependent dynamic nonlinear problems on time scales and a unique solution it has. Further more, we obtained results on the dependency of solutions for state-dependent dynamic nonlinear problems on time scales with respect to initial values.

Article Details

References

  1. D.M. Abdou, H.M. Rezk, A.S. Zaghrout, S.H. Saker, Some New Dynamic Inequalities Involving The Dyanamic Hardy Operator With Kernels, Al-Azhar Bull. Sci. 35 (2024), 9. https://doi.org/10.58675/2636-3305.1680.
  2. D.R. Anderson, A. Boucherif, Nonlocal Initial Value Problem for First-Order Dynamic Equations on Time Scales, in: Proceedings of the 6th International Conference on Differential Equations and Dynamical Systems, p. 162–166, (2009).
  3. M. Bohner, L. Erbe, A. Peterson, Oscillation for Nonlinear Second Order Dynamic Equations on a Time Scale, J. Math. Anal. Appl. 301 (2005), 491–507. https://doi.org/10.1016/j.jmaa.2004.07.038.
  4. M. Bohner, A.A. Martynyuk, Elements of Stability Theory of A.M. Liapunov for Dynamic Equations on Time Scales, Nonlinear Dyn. Syst. Theory, 7 (2007), 225–251.
  5. M. Bohner, A.C. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
  6. M. Bohner, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. https://doi.org/10.1007/978-0-8176-8230-9.
  7. M. Bohner, S. Tikare, I.L.D.D. Santos, First-Order Nonlinear Dynamic Initial Value Problems, Int. J. Dyn. Syst. Differ. Equ. 11 (2021), 241–254. https://doi.org/10.1504/IJDSDE.2021.117358.
  8. M. Cicho ´n, B. Satco, A. Sikorska-Nowak, Impulsive Nonlocal Differential Equations through Differential Equations on Time Scales, Appl. Math. Comput. 218 (2011), 2449–2458. https://doi.org/10.1016/j.amc.2011.07.057.
  9. M. Zakarya, A.I. Saied, A.A.I. Al-Thaqfan, M. Ali, H.M. Rezk, On Some New Dynamic Hilbert-Type Inequalities across Time Scales, Axioms 13 (2024), 475. https://doi.org/10.3390/axioms13070475.
  10. A.M.A. El-Sayed, H. El-Owaidy, R. Gamal Ahmed, Solvability of a Boundary Value Problem of Self-Reference Functional Differential Equation with Infinite Point and Integral Conditions, J. Math. Comput. Sci. 21 (2020), 296–308. https://doi.org/10.22436/jmcs.021.04.03.
  11. A.M.A. El-Sayed, R. Gama, H.R. Ebead, Solvability of Nonlinear Functional Differential Equations with StateDependent Derivatives, Methods of Functional Analysis and Topology 29 (2023), 30–38. https://doi.org/10.31392/MFAT-npu26_1-2.2023.03.
  12. Y.A.A. Elsaid, A.A.S. Zaghrout, A.A. El-Deeb, Some New Inequalities for C-Monotone Functions with Respect to (q, ω)-Hahn Difference Operator, Al-Azhar Bull. Sci. 35 (2024), 6. https://doi.org/10.58675/2636-3305.1677.
  13. T.S. Hassan, R.G. Ahmed, A.M.A. El-Sayed, et al. Solvability of a State–Dependence Functional Integro-Differential Inclusion with Delay Nonlocal Condition, Mathematics 10 (2022), 2420. https://doi.org/10.3390/math10142420.
  14. S. Hilger, Analysis on Measure Chains – A Unified Approach to Continuous and Discrete Calculus, Results Math. 18 (1990), 18–56. https://doi.org/10.1007/BF03323153.
  15. J. Hoffacker, C.C. Tisdell, Stability and Instability for Dynamic Equations on Time Scales, Comput. Math. Appl. 49 (2005), 1327–1334. https://doi.org/10.1016/j.camwa.2005.01.016.
  16. V.G. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7.
  17. Y. Ma, Y. Zhang, J. Sun, On Qualitative Analysis of Delay Systems and x δ = f(t, x, x σ ) on Time Scales, Proc. - Math. Sci. 120 (2010), 249–258. https://doi.org/10.1007/s12044-010-0017-0.
  18. S. Makharesh, H. El-Owaidy, A. El-Deeb, Some Generalizations of Reverse Hardy-Type Inequalities via Jensen Integral Inequality on Time Scales, Al-Azhar Bull. Sci. 33 (2022), 59–69. https://doi.org/10.21608/absb.2022.151322.1198.
  19. V. Pata, Fixed Point Theorems and Applications, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-19670-7.
  20. H.M. Rezk, M. Zakarya, A.A.I. Al-Thaqfan, et al. Unveiling New Reverse Hilbert-Type Dynamic Inequalities within the Framework of Delta Calculus on Time Scales, AIMS Math. 10 (2025), 2254–2276. https://doi.org/10.3934/math.2025104.
  21. S.H. Saker, N. Mohammed, H.M. Rezk, A.I. Saied, K. Aldwoah, A. Alahmade, Unified Framework for Continuous and Discrete Relations of Gehring and Muckenhoupt Weights on Time Scales, Axioms 13 (2024), 754. https://doi.org/10.3390/axioms13110754.
  22. I.L.D.D. Santos, On Qualitative and Quantitative Results for Solutions to First-Order Dynamic Equations on Time Scales, Bol. Soc. Mat. Mex. 21 (2015), 205–218. https://doi.org/10.1007/s40590-015-0057-7.
  23. S. Tikare, Nonlocal Initial Value Problems For First-Order Dynamic Equations On Time Scales, Appl. Math. E Notes 21 (2021), 410–420.
  24. C.C. Tisdell, A. Zaidi, Basic Qualitative and Quantitative Results for Solutions to Nonlinear, Dynamic Equations on Time Scales with an Application to Economic Modelling, Nonlinear Anal.: Theory Methods Appl. 68 (2008), 3504–3524. https://doi.org/10.1016/j.na.2007.03.043.
  25. Z.Q. Zhu, Q.R. Wang, Existence of Nonoscillatory Solutions to Neutral Dynamic Equations on Time Scales, J. Math. Anal. Appl. 335 (2007), 751–762. https://doi.org/10.1016/j.jmaa.2007.02.008.