Increasing Intention to Continue Participating in Digital Transformation among SMEs: Partial Least Squares Structural Equation Modeling (PLS-SEM) Analysis Using R

Main Article Content

Nguyen Thi Phuong Giang, Le Thi Hong Nhung, Nguyen Binh Phuong Duy

Abstract

This study investigates the determinants of Vietnamese enterprises' intention to persist with digital transformation amid increasingly interconnected supply chains and the rapid expansion of e-commerce. It explores this intention from the customer satisfaction perspective, considering the transformation of enterprises and technology providers facilitating this process. Employing structural equation modeling (SEM), this study analyzes data collected from 752 managers of small- and medium-sized enterprises (SMEs) within the logistics and import-export sectors. These findings indicate that compatibility, confirmation, perceived usefulness, and perceived ease of use significantly affect customer satisfaction and influence the intention to continue digital transformation. This study offers managerial implications for enhancing satisfaction and promoting digital transformation by integrating compatibility with confirmation.

Article Details

References

  1. J. Nair, A. Chellasamy, B.N.B. Singh, Readiness Factors for Information Technology Adoption in SMEs: Testing an Exploratory Model in an Indian Context, J. Asia Bus. Stud. 13 (2019), 694–718. https://doi.org/10.1108/JABS-09-2018-0254.
  2. S. Gamache, G. Abdul-Nour, C. Baril, Evaluation of the Influence Parameters of Industry 4.0 and Their Impact on the Quebec Manufacturing SMEs: The First Findings, Cogent Eng. 7 (2020), 1771818. https://doi.org/10.1080/23311916.2020.1771818.
  3. X. Teng, Z. Wu, F. Yang, Research on the Relationship between Digital Transformation and Performance of SMEs, Sustainability 14 (2022), 6012. https://doi.org/10.3390/su14106012.
  4. B.H. Leso, M.N. Cortimiglia, A. Ghezzi, The Contribution of Organizational Culture, Structure, and Leadership Factors in the Digital Transformation of SMEs: A Mixed-Methods Approach, Cogn. Technol. Work 25 (2023), 151–179. https://doi.org/10.1007/s10111-022-00714-2.
  5. T.H. Nguyen, X.C. Le, T.H.L. Vu, An Extended Technology-Organization-Environment (TOE) Framework for Online Retailing Utilization in Digital Transformation: Empirical Evidence from Vietnam, J. Open Innov.: Technol. Mark. Complex. 8 (2022), 200. https://doi.org/10.3390/joitmc8040200.
  6. L.D. Lang, A. Behl, N.N.D. Phuong, J. Gaur, N.T. Dzung, Toward SME Digital Transformation in the Supply Chain Context: The Role of Structural Social and Human Capital, Int. J. Phys. Distrib. Logist. Manag. 53 (2023), 448–466. https://doi.org/10.1108/IJPDLM-12-2021-0525.
  7. B.T. Mai, P.V. Nguyen, U.N.H. Ton, Z.U. Ahmed, Government Policy, IT Capabilities, Digital Transformation, and Innovativeness in Post-Covid Context: Case of Vietnamese SMEs, Int. J. Organ. Anal. 32 (2024), 333–356. https://doi.org/10.1108/IJOA-11-2022-3480.
  8. H. Hoang, T. Le Tan, Unveiling Digital Transformation: Investigating Technology Adoption in Vietnam’s Food Delivery Industry for Enhanced Customer Experience, Heliyon 9 (2023), e19719. https://doi.org/10.1016/j.heliyon.2023.e19719.
  9. C.Q. Nguyen, A.M.-T. Nguyen, P. Tran, Assessing the Critical Determinants of Cross-Border E-Commerce Adoption Intention in Vietnamese Small and Medium-Sized Enterprises: PLS-SEM Algorithm Approach, J. Open Innov.: Technol. Mark. Complex. 10 (2024), 100257. https://doi.org/10.1016/j.joitmc.2024.100257.
  10. S. Gorgels, M. Priem, T. Blagoeva, A. Martinelle, G. Milanesi, Annual Report on European SMEs 2021/2022 – SMEs and Environmental Sustainability – Background Document, Publications Office of the European Union, 2022.
  11. A. Hoque, D.T. Le, T. Le, Does Digital Transformation Reduce Bank’s Risk-Taking? Evidence from Vietnamese Commercial Banks, J. Open Innov.: Technol. Mark. Complex. 10 (2024), 100260. https://doi.org/10.1016/j.joitmc.2024.100260.
  12. N. Minh Trang, Impacts of Digital Transformation on Manufacture in Vietnam, VNU J. Sci.: Policy Manag. Stud. 39 (2023), 34-45. https://doi.org/10.25073/2588-1116/vnupam.4375.
  13. G. Wiyono, K.C. Kirana, Digital Transformation of SMEs Financial Behavior in the New Normal Era, J. Keuang. Perbankan 25 (2021), 191–211. https://doi.org/10.26905/jkdp.v25i1.4954.
  14. D.T. Parra-Sánchez, L.H. Talero-Sarmiento, C.D. Guerrero, Assessment of ICT Policies for Digital Transformation in Colombia: Technology Readiness for IoT Adoption in SMEs in the Trading Sector, Digit. Policy Regul. Gov. 23 (2021), 412–431. https://doi.org/10.1108/DPRG-09-2020-0120.
  15. G.D. Nguyen, T.H.T. Dao, Factors Influencing Continuance Intention to Use Mobile Banking: An Extended Expectation-Confirmation Model with Moderating Role of Trust, Human. Soc. Sci. Commun. 11 (2024), 276. https://doi.org/10.1057/s41599-024-02778-z.
  16. E. Bruce, Z. Shurong, D. Ying, et al. The Effect of Digital Marketing Adoption on SMEs Sustainable Growth: Empirical Evidence from Ghana, Sustainability 15 (2023), 4760. https://doi.org/10.3390/su15064760.
  17. G.R. Jones, Organizational Theory, Design and Change, Global Edition, Pearson Education, 2013.
  18. J. Paul, A. Ueno, C. Dennis, et al. Digital Transformation: A Multidisciplinary Perspective and Future Research Agenda, Int. J. Consum. Stud. 48 (2024), e13015. https://doi.org/10.1111/ijcs.13015.
  19. A.O. Ajayi-Nifise, O. Odeyemi, N.Z. Mhlongo, et al. Digital Transformation in Banking: The HR Perspective on Managing Change and Cultivating Digital Talent, Int. J. Sci. Res. Arch. 11 (2024), 1452–1459. https://doi.org/10.30574/ijsra.2024.11.1.0237.
  20. Z. Lu, Y. Lin, Y. Li, Does Corporate Engagement in Digital Transformation Influence Greenwashing? Evidence from China, Finance Res. Lett. 58 (2023), 104558. https://doi.org/10.1016/j.frl.2023.104558.
  21. Y. Shen, Y. Fu, M. Song, Does Digital Transformation Make Enterprises Greener? Evidence from China, Econ. Anal. Policy 80 (2023), 1642–1654. https://doi.org/10.1016/j.eap.2023.11.006.
  22. K. Agustian, E.S. Mubarok, A. Zen, W. Wiwin, A.J. Malik, The Impact of Digital Transformation on Business Models and Competitive Advantage, Technol. Soc. Perspect. (TACIT) 1 (2023), 79–93. https://doi.org/10.61100/tacit.v1i2.55.
  23. W. Cheng, C. Li, T. Zhao, The Stages of Enterprise Digital Transformation and Its Impact on Internal Control: Evidence from China, Int. Rev. Financ. Anal. 92 (2024), 103079. https://doi.org/10.1016/j.irfa.2024.103079.
  24. S.D. Müller, H. Konzag, J.A. Nielsen, H.B. Sandholt, Digital Transformation Leadership Competencies: A Contingency Approach, Int. J. Inf. Manag. 75 (2024), 102734. https://doi.org/10.1016/j.ijinfomgt.2023.102734.
  25. Karahanna, Agarwal, Angst, Reconceptualizing Compatibility Beliefs in Technology Acceptance Research, MIS Q. 30 (2006), 781. https://doi.org/10.2307/25148754.
  26. F.D. Davis, Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Q. 13 (1989), 319. https://doi.org/10.2307/249008.
  27. M.S. Abubakari, G.A.N. Zakaria, J. Musa, Perceived Compatibility and Students’ Intention to Adopt Digital Technologies in Islamic Education Institutions, Cogent Educ. 11 (2024), 2430869. https://doi.org/10.1080/2331186X.2024.2430869.
  28. H. Abuhassna, N. Yahaya, M.A.Z.M. Zakaria, et al. Trends on Using the Technology Acceptance Model (TAM) for Online Learning: A Bibliometric and Content Analysis, Int. J. Inf. Educ. Technol. 13 (2023), 131–142. https://doi.org/10.18178/ijiet.2023.13.1.1788.
  29. D.A. Adams, R.R. Nelson, P.A. Todd, Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication, MIS Q. 16 (1992), 227-247. https://doi.org/10.2307/249577.
  30. D.R. Cavalcanti, T. Oliveira, F. De Oliveira Santini, Drivers of Digital Transformation Adoption: A Weight and Meta-Analysis, Heliyon 8 (2022), e08911. https://doi.org/10.1016/j.heliyon.2022.e08911.
  31. T. Zou, G. Ertug, G. George, The Capacity to Innovate: A Meta-Analysis of Absorptive Capacity, Innovation 20 (2018), 87–121. https://doi.org/10.1080/14479338.2018.1428105.
  32. T. Greenhalgh, G. Robert, F. Macfarlane, P. Bate, O. Kyriakidou, Diffusion of Innovations in Service Organizations: Systematic Review and Recommendations, Milbank Q. 82 (2004), 581–629. https://doi.org/10.1111/j.0887-378X.2004.00325.x.
  33. W.M. Cohen, D.A. Levinthal, Absorptive Capacity: A New Perspective on Learning and Innovation, Admin. Sci. Q. 35 (1990), 128-152. https://doi.org/10.2307/2393553.
  34. I. Kastelli, P. Dimas, D. Stamopoulos, A. Tsakanikas, Linking Digital Capacity to Innovation Performance: The Mediating Role of Absorptive Capacity, J. Knowl. Econ. 15 (2024), 238–272. https://doi.org/10.1007/s13132-022-01092-w.
  35. V. Venkatesh, H. Bala, Technology Acceptance Model 3 and a Research Agenda on Interventions, Decis. Sci. 39 (2008), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x.
  36. R. Gaardboe, N. Sandalgaard, T. Nyvang, An Assessment of Business Intelligence in Public Hospitals, Int. J. Inf. Syst. Project Manag. 5 (2022), 5–18. https://doi.org/10.12821/ijispm050401.
  37. J. Selimović, A. Pilav-Velić, L. Krndžija, Digital Workplace Transformation in the Financial Service Sector: Investigating the Relationship between Employees’ Expectations and Intentions, Technol. Soc. 66 (2021), 101640. https://doi.org/10.1016/j.techsoc.2021.101640.
  38. M. Lindawati, P. Parwoto, The Impact Of Transformational Leadership And Motivation On Employee Performance With Job Satisfaction As Intervening Variable In Indonesian Banking Industry During Digital Transformation, J. Ind. Eng. Manag. Res. 2 (2021), 51-66.
  39. Y. Zhong, H.-C. Moon, Investigating Customer Behavior of Using Contactless Payment in China: A Comparative Study of Facial Recognition Payment and Mobile QR-Code Payment, Sustainability 14 (2022), 7150. https://doi.org/10.3390/su14127150.
  40. P. Raman, K. Aashish, To Continue or Not to Continue: A Structural Analysis of Antecedents of Mobile Payment Systems in India, Int. J. Bank Mark. 39 (2021), 242–271. https://doi.org/10.1108/IJBM-04-2020-0167.
  41. M. Yang, A.A. Mamun, M. Mohiuddin, et al. Cashless Transactions: A Study on Intention and Adoption of e-Wallets, Sustainability 13 (2021), 831. https://doi.org/10.3390/su13020831.
  42. F. Şahin, E. Doğan, U. İlic, Y.L. Şahin, Factors Influencing Instructors’ Intentions to Use Information Technologies in Higher Education amid the Pandemic, Educ. Inf. Technol. 26 (2021), 4795–4820. https://doi.org/10.1007/s10639-021-10497-0.
  43. I. Hwang, H. Shim, W.J. Lee, Do an Organization’s Digital Transformation and Employees’ Digital Competence Catalyze the Use of Telepresence?, Sustainability 14 (2022), 8604. https://doi.org/10.3390/su14148604.
  44. E.C. Tolman, C.S. Hall, E.P. Bretnall, A Disproof of the Law of Effect and a Substitution of the Laws of Emphasis, Motivation and Disruption, J. Exp. Psychol. 15 (1932), 601–614. https://doi.org/10.1037/h0073609.
  45. R.L. Oliver, A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions, J. Mark. Res. 17 (1980), 460. https://doi.org/10.2307/3150499.
  46. A.A. Pinem, I.M. Immanuella, A.N. Hidayanto, et al. Trust and Its Impact towards Continuance of Use in Government-to-Business Online Service, Transform. Gov.: People Process Policy 12 (2018), 265–285. https://doi.org/10.1108/TG-02-2018-0008.
  47. H. Jo, Y. Bang, Understanding Continuance Intention of Enterprise Resource Planning (ERP): TOE, TAM, and IS Success Model, Heliyon 9 (2023), e21019. https://doi.org/10.1016/j.heliyon.2023.e21019.
  48. H.M. Al-Hattami, F.A. Almaqtari, What Determines Digital Accounting Systems’ Continuance Intention? An Empirical Investigation in SMEs, Human. Soc. Sci. Commun. 10 (2023), 814. https://doi.org/10.1057/s41599-023-02332-3.
  49. C. Liao, P. Palvia, J.L. Chen, Information Technology Adoption Behavior Life Cycle: Toward a Technology Continuance Theory (TCT), Int. J. Inf. Manag. 29 (2009), 309–320. https://doi.org/10.1016/j.ijinfomgt.2009.03.004.
  50. S.C. Chen, M.L. Liu, C.P. Lin, Integrating Technology Readiness into the Expectation–Confirmation Model: An Empirical Study of Mobile Services, Cyberpsychol. Behav. Soc. Netw. 16 (2013), 604–612. https://doi.org/10.1089/cyber.2012.0606.
  51. A. Gupta, A. Yousaf, A. Mishra, How Pre-Adoption Expectancies Shape Post-Adoption Continuance Intentions: An Extended Expectation-Confirmation Model, Int. J. Inf. Manag. 52 (2020), 102094. https://doi.org/10.1016/j.ijinfomgt.2020.102094.
  52. K. Soria-Barreto, S. Ruiz-Campo, A.S. Al-Adwan, S. Zuniga-Jara, University Students Intention to Continue Using Online Learning Tools and Technologies: An International Comparison, Sustainability 13 (2021), 13813. https://doi.org/10.3390/su132413813.
  53. M. Hubert, M. Blut, C. Brock, C. Backhaus, T. Eberhardt, Acceptance of Smartphone‐Based Mobile Shopping: Mobile Benefits, Customer Characteristics, Perceived Risks, and the Impact of Application Context, Psychol. Mark. 34 (2017), 175–194. https://doi.org/10.1002/mar.20982.
  54. M. Pinasti, B.A. Pramuka, Does Cloud-Based Accounting Information System Harmonize the Small Business Needs?, J. Inf. Organ. Sci. 44 (2020), 141–156. https://doi.org/10.31341/jios.44.1.6.
  55. Z. Dulcic, D. Pavlic, I. Silic, Evaluating the Intended Use of Decision Support System (DSS) by Applying Technology Acceptance Model (TAM) in Business Organizations in Croatia, Procedia - Soc. Behav. Sci. 58 (2012), 1565–1575. https://doi.org/10.1016/j.sbspro.2012.09.1143.
  56. F. Kitsios, I. Giatsidis, M. Kamariotou, Digital Transformation and Strategy in the Banking Sector: Evaluating the Acceptance Rate of E-Services, J. Open Innov.: Technol. Mark. Complex. 7 (2021), 204. https://doi.org/10.3390/joitmc7030204.
  57. C. Cheng, H. Cui, Combining Digital and Legacy Technologies: Firm Digital Transformation Strategies—Evidence from Chinese Manufacturing Companies, Human. Soc. Sci. Commun. 11 (2024), 1021. https://doi.org/10.1057/s41599-024-03498-0.
  58. M. Höyng, A. Lau, Being Ready for Digital Transformation: How to Enhance Employees’ Intentional Digital Readiness, Comput. Human Behav. Rep. 11 (2023), 100314. https://doi.org/10.1016/j.chbr.2023.100314.
  59. Z. Qiu, S. Wang, Y. Hou, S. Xu, What Drives Infrastructure Participants to Adopt Digital Technology: A Nexus of Internal and External Factors, Sustainability 15 (2023), 16229. https://doi.org/10.3390/su152316229.
  60. H. Jo, H.Y. Ahn, Understanding Digital Engagement: Factors Influencing Awareness and Satisfaction of Digital Transformation, Discover Comput. 27 (2024), 23. https://doi.org/10.1007/s10791-024-09455-4.
  61. A. Schorr, The Technology Acceptance Model (TAM) and its Importance for Digitalization Research: A Review, in: International Symposium on Technikpsychologie (TecPsy) 2023, Sciendo, 2023, pp. 55-65.
  62. A. Bhattacherjee, Understanding Information Systems Continuance: An Expectation-Confirmation Model, MIS Q. 25 (2001), 351. https://doi.org/10.2307/3250921.
  63. T.C.K. Huang, I.L. Wu, C.C. Chou, Investigating Use Continuance of Data Mining Tools, Int. J. Inf. Manag. 33 (2013), 791–801. https://doi.org/10.1016/j.ijinfomgt.2013.05.007.
  64. S. Karim, F. Naz, M.A. Naeem, S.A. Vigne, Is FinTech Providing Effective Solutions to Small and Medium Enterprises (SMEs) in ASEAN Countries?, Econ. Anal. Policy 75 (2022), 335–344. https://doi.org/10.1016/j.eap.2022.05.019.
  65. M. Olivia, N.K. Marchyta, The Influence of Perceived Ease of Use and Perceived Usefulness on E-Wallet Continuance Intention: Intervening Role of Customer Satisfaction, J. Teknik Ind. 24 (2022), 13–22. https://doi.org/10.9744/jti.24.1.13-22.
  66. B. Trenerry, S. Chng, Y. Wang, Z.S. Suhaila, S.S. Lim, H.Y. Lu, P.H. Oh, Preparing Workplaces for Digital Transformation: An Integrative Review and Framework of Multi-Level Factors, Front. Psychol. 12 (2021), 620766. https://doi.org/10.3389/fpsyg.2021.620766.
  67. S. Talwar, A. Dhir, A. Khalil, G. Mohan, A.K.M.N. Islam, Point of Adoption and beyond. Initial Trust and Mobile-Payment Continuation Intention, J. Retail. Consum. Serv. 55 (2020), 102086. https://doi.org/10.1016/j.jretconser.2020.102086.
  68. N. Singh, N. Sinha, How Perceived Trust Mediates Merchant’s Intention to Use a Mobile Wallet Technology, J. Retail. Consum. Serv. 52 (2020), 101894. https://doi.org/10.1016/j.jretconser.2019.101894.
  69. K. Swani, To App or Not to App: A Business-to-Business Seller’s Decision, Ind. Mark. Manag. 93 (2021), 389–400. https://doi.org/10.1016/j.indmarman.2020.05.033.
  70. F. Caffaro, M.M. Cremasco, M. Roccato, E. Cavallo, Drivers of Farmers’ Intention to Adopt Technological Innovations in Italy: The Role of Information Sources, Perceived Usefulness, and Perceived Ease of Use, J. Rural Stud. 76 (2020), 264–271. https://doi.org/10.1016/j.jrurstud.2020.04.028.
  71. E. Battisti, S. Alfiero, E. Leonidou, Remote Working and Digital Transformation during the COVID-19 Pandemic: Economic–Financial Impacts and Psychological Drivers for Employees, J. Bus. Res. 150 (2022), 38–50. https://doi.org/10.1016/j.jbusres.2022.06.010.
  72. O. Rodríguez-Espíndola, S. Chowdhury, P.K. Dey, P. Albores, A. Emrouznejad, Analysis of the Adoption of Emergent Technologies for Risk Management in the Era of Digital Manufacturing, Technol. Forecast. Soc. Change 178 (2022), 121562. https://doi.org/10.1016/j.techfore.2022.121562.
  73. P.C. Verhoef, T. Broekhuizen, Y. Bart, A. Bhattacharya, J. Qi Dong, N. Fabian, M. Haenlein, Digital Transformation: A Multidisciplinary Reflection and Research Agenda, J. Bus. Res. 122 (2021), 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022.
  74. N. Wilson, K. Keni, P.H.P. Tan, The Role of Perceived Usefulness and Perceived Ease-of-Use toward Satisfaction and Trust Which Influence Computer Consumers’ Loyalty in China, Gadjah Mada Int. J. Bus. 23 (2021), 262. https://doi.org/10.22146/gamaijb.32106.
  75. T. Hasani, N. O’Reilly, A. Dehghantanha, et al. Evaluating the Adoption of Cybersecurity and Its Influence on Organizational Performance, SN Bus. Econ. 3 (2023), 97. https://doi.org/10.1007/s43546-023-00477-6.
  76. S. Iyanna, P. Kaur, P. Ractham, S. Talwar, A.K.M. Najmul Islam, Digital Transformation of Healthcare Sector. What Is Impeding Adoption and Continued Usage of Technology-Driven Innovations by End-Users?, J. Bus. Res. 153 (2022), 150–161. https://doi.org/10.1016/j.jbusres.2022.08.007.
  77. M.N.K. Saunders, P. Lewis, A. Thornhill, Research Methods for Business Students, Harlow: Pearson, 2023.
  78. S. Ray, N.P. Danks, A. Calero Valdez, SEMinR: Domain-Specific Language for Building, Estimating, and Visualizing Structural Equation Models in R, SSRN, 2021. https://doi.org/10.2139/ssrn.3900621.
  79. J.F. Hair, G.T.M. Hult, C.M. Ringle, M. Sarstedt, N.P. Danks, S. Ray, Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-80519-7.
  80. U. Sekaran, R. Bougie, Research Methods for Business: A Skill Building Approach, Wiley, 2016.
  81. J.C. Nunnally, Psychometric Theory 3E, Tata McGraw-Hill Education, 1994.
  82. J. Hair, A. Alamer, Partial Least Squares Structural Equation Modeling (PLS-SEM) in Second Language and Education Research: Guidelines Using an Applied Example, Res. Methods Appl. Linguist. 1 (2022), 100027. https://doi.org/10.1016/j.rmal.2022.100027.
  83. C. Fornell, D.F. Larcker, Evaluating Structural Equation Models with Unobservable Variables and Measurement Error, J. Mark. Res. 18 (1981), 39. https://doi.org/10.2307/3151312.
  84. J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Routledge, 2013.
  85. W.W. Chin, The Partial Least Squares Approach for Structural Equation Modeling, in: Modern Methods for Business Research, Lawrence Erlbaum Associates Publishers, Mahwah, 1998, pp. 295-336.
  86. H. Hasan, S.N.S. Wahid, M. Jais, H. Abdullah, A Structural Equation Modelling Approach: Adoption of Smartphone Banking among Working Adults, AIP Conf. Proc. 1974 (2018), 040012. https://doi.org/10.1063/1.5041686.
  87. L.A. Hussein, A.S. Baharudin, S. Kiumarsi, M.F. Hilmi, Factors Influencing the Intention to Continue Using B2B E-Commerce in Manufacturing SMEs, Eng. Technol. Appl. Sci. Res. 10 (2020), 5528–5533. https://doi.org/10.48084/etasr.3373.
  88. T.D. Susanto, M. Aljoza, Individual Acceptance of E-Government Services in a Developing Country: Dimensions of Perceived Usefulness and Perceived Ease of Use and the Importance of Trust and Social Influence, Procedia Comput. Sci. 72 (2015), 622–629. https://doi.org/10.1016/j.procs.2015.12.171.
  89. A. Kumar Bhardwaj, A. Garg, Y. Gajpal, Determinants of Blockchain Technology Adoption in Supply Chains by Small and Medium Enterprises (SMEs) in India, Math. Probl. Eng. 2021 (2021), 5537395. https://doi.org/10.1155/2021/5537395.
  90. W. Cheung, M.K. Chang, V.S. Lai, Prediction of Internet and World Wide Web Usage at Work: A Test of an Extended Triandis Model, Decis. Support Syst. 30 (2000), 83–100. https://doi.org/10.1016/S0167-9236(00)00125-1.
  91. S.M. Tseng, Exploring the Intention to Continue Using Web-Based Self-Service, J. Retail. Consum. Serv. 24 (2015), 85–93. https://doi.org/10.1016/j.jretconser.2015.02.001.
  92. J.Y.L. Thong, S.J. Hong, K.Y. Tam, The Effects of Post-Adoption Beliefs on the Expectation-Confirmation Model for Information Technology Continuance, Int. J. Human-Comput. Stud. 64 (2006), 799–810. https://doi.org/10.1016/j.ijhcs.2006.05.001.