Analysis of Weighted Sobolev Space Solutions for Nonlinear Capillarity Problem with Dirichlet Boundary Conditions

Main Article Content

Lhoucine Hmidouch, Manal Badgaish

Abstract

This work establishes the existence of weak solutions for p-Laplacian-like equations in weighted Sobolev spaces under Dirichlet boundary conditions, assuming the data is in the weighted Lebesgue space.

Article Details

References

  1. I. Aydin, Weighted Variable Sobolev Spaces and Capacity, J. Funct. Spaces Appl. 2012 (2012), 132690. https://doi.org/10.1155/2012/132690.
  2. M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, Basel, 2009. https://doi.org/10.1007/978-3-7643-9982-5.
  3. P. Drábek, A. Kufner, F. Nicolosi, Nonlinear Elliptic Equations, Singular and Degenerate Cases, Preprint, University of West Bohemia, 1996.
  4. L. Hmidouch, A. Jamea, M. Laghdir, Existence of Entropy Solution for a Nonlinear Parabolic Problem in Weighted Sobolev Space via Optimization Method, Math. Model. Anal. 28 (2023), 393–414. https://doi.org/10.3846/mma.2023.17010.
  5. J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Mineola, 2006.
  6. J.L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
  7. W.M. Ni, J. Serrin, Non-Existence Theorems for Quasilinear Partial Differential Equations, Rend. Circ. Mat. Palermo 2 Suppl. 8 (1985), 171–185.
  8. W.M. Ni, J. Serrin, Existence and Nonexistence Theorems for Ground States for Quasilinear Partial Differential Equations, Accad. Naz. dei Lincei 77 (1986), 231–257.
  9. M.M. Rodrigues, Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators, Mediterr. J. Math. 9 (2012), 211–223. https://doi.org/10.1007/s00009-011-0115-y.
  10. S. Shokooh, G.A. Afrouzi, S. Heidarkhani, Multiple Solutions for P(X)-Laplacian-Like Problems With Neumann Condition, Acta Univ. Apulensis 49 (2017), 111–128.
  11. B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, Berlin, 2000.