Properties and Characterizations of Controlled K-g-Fusion Frames within Hilbert C∗-Modules
Main Article Content
Abstract
This paper investigates several aspects of controlled K-g-fusion frames within the setting of Hilbert C∗- modules. We provide detailed characterizations of these frames, highlighting their structural properties and demonstrating how they adapt under transformations by various operators. A significant focus is placed on the relationship between the quotient operator and the controlled K-g-fusion frames, exploring their algebraic properties extensively. The results enrich the theoretical understanding of fusion frames.
Article Details
References
- L. Arambaši´c, On Frames for Countably Generated Hilbert C ∗ -Modules, Proc. Amer. Math. Soc. 135 (2006), 469–478. https://doi.org/10.1090/S0002-9939-06-08498-X.
- N. Assila, H. Labrigui, A. Touri, M. Rossafi, Integral Operator Frames on Hilbert C ∗ -Modules, Ann. Univ. Ferrara 70 (2024), 1271–1284. https://doi.org/10.1007/s11565-024-00501-z.
- R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6.
- R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally C ∗ -Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
- A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. 33 (2025), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
- A. Khosravi, K. Musazadeh, Controlled Fusion Frames, Methods Funct. Anal. Topol. 18 (2012), 256–265.
- A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
- A. Lfounoune, H. Massit, A. Karara, M. Rossafi, Sum of G-Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 64. https://doi.org/10.28924/2291-8639-23-2025-64.
- H. Massit, M. Rossafi, C. Park, Some Relations between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
- H. Liu, Y. Huang, F. Zhu, Controlled g-Fusion Frame in Hilbert Space, Int. J. Wavelets Multiresolut. Inf. Process. 19 (2021), 2150009. https://doi.org/10.1142/S0219691321500090.
- V.M. Manu˘ılov, E.V. Troitsky, Hilbert C ∗ -Modules, American Mathematical Society, Providence, 2005.
- F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 19 (2021), 836–857. https://doi.org/10.28924/2291-8639-19-2021-836.
- M. Nouri, A. Rahimi, S. Najafizadeh, Controlled K-Frames in Hilbert Spaces, Int. J. Anal. Appl. 4 (2015), 39–50.
- E.H. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
- Q. Xu, X. Fang, A Note on Majorization and Range Inclusion of Adjointable Operators on Hilbert C ∗ -Modules, Linear Algebra Appl. 516 (2017), 118–125. https://doi.org/10.1016/j.laa.2016.11.025.
- A. Rahimi, A. Fereydooni, Controlled g-Frames and their g-Multipliers in Hilbert Spaces, An. St. Univ. Ovidius Constanta 21 (2013), 223–236.
- G. Rahimlou, V. Sadri, R. Ahmadi, Construction of Controlled K-g-Fusion Frames in Hilbert Spaces, U.P.B. Sci. Bull., Ser. A 82 (2020), 111–120.
- M. Rossafi, F. Nhari, Controlled K-g-Fusion Frames in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
- M. Rossafi, F. Nhari, K-g-Duals in Hilbert C ∗ -Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
- M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous g-Frames with C ∗ -Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
- M. Rossafi, S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
- M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert C ∗ -Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
- M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2025), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
- M. Rossafi, S. Kabbaj, ∗-K-Operator Frame for End∗ A (H), Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
- M. Rossafi, S. Kabbaj, Operator Frame for End∗ A (H), J. Linear Topol. Algebra 8 (2019), 85–95.
- M. Rossafi, S. Kabbaj, ∗-K-g-Frames in Hilbert A-Modules, J. Linear Topol. Algebra 7 (2018), 63–71.
- M. Rossafi, S. Kabbaj, ∗-g-Frames in Tensor Products of Hilbert C ∗ -Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25.
- M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for B(H), Methods Funct. Anal. Topol. 29 (2023), 111–124.
- Q. Xu, L. Sheng, Positive Semi-Definite Matrices of Adjointable Operators on Hilbert C ∗ -Modules, Linear Algebra Appl. 428 (2008), 992–1000. https://doi.org/10.1016/j.laa.2007.08.035.
- L.C. Zhang, The Factor Decomposition Theorem of Bounded Generalized Inverse Modules and Their Topological Continuity, Acta Math. Sin. Engl. Ser. 23 (2007), 1413–1418. https://doi.org/10.1007/s10114-007-0867-2.