Higher-Order Derivations and Their Applications in Algebraic Structures
Main Article Content
Abstract
We introduce and develop the theory of higher-order derivations on associative algebras, extending the classical notion by defining n-th order derivations that satisfy generalized Leibniz rules involving n + 1 elements. Fundamental properties of these higher-order derivations are established, and explicit examples are provided in polynomial and matrix algebras. We demonstrate that higher-order derivations correspond to elements in the Hochschild cohomology groups HHn(C,C) and show that they define infinitesimal deformations of algebras of order n. Applications are discussed in differential algebra and algebraic geometry, highlighting their roles in higher-order differential operators and jet spaces, as well as in mathematical physics for modeling higher-order symmetries and conservation laws.
Article Details
References
- M. Gerstenhaber, On the Deformation of Rings and Algebras, Ann. Math. 79 (1964), 59–103. https://doi.org/10.2307/1970484.
- M. Gerstenhaber, On the Deformation of Rings and Algebras: II, Ann. Math. 84 (1966), 1–19. https://doi.org/10.2307/1970528.
- E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, 1973.
- S. Lang, Algebra, Springer, 2002. https://doi.org/10.1007/978-1-4613-0041-0.
- M.E. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., 1969.
- K.H. Hakami, J. Nisar, K. Alnefaie, M.A. Ansari, Characterizing N-Type Derivations on Standard Operator Algebras by Local Actions, AIMS Math. 9 (2024), 25319–25332. https://doi.org/10.3934/math.20241236.
- S. Ali, A.N.A. Koam, M.A. Ansari, On ∗ -Differential Identities in Prime Rings with Involution, Hacet. J. Math. Stat. 49 (2020), 708–715. https://doi.org/10.15672/hujms.588726.
- M.A. Ansari, A.H. Shikeh, J. Nisar, S. Tamboli, Characterizations of Nonadditive Mappings in Prime ∗-Rings Involving Bi-Skew Products, Eur. J. Pure Appl. Math. 18 (2025), 5528–5528. https://doi.org/10.29020/nybg.ejpam.v18i2.5528.
- J.J. Rotman, An Introduction to Homological Algebra, Springer, 2009. https://doi.org/10.1007/b98977.
- F. Hasse, F.K. Schmidt, Noch eine Begründung der Theorie der Höheren Differentialquotienten in einem Algebraischen Funktionenkörper einer Unbestimmten (Nach einer Brieflichen Mitteilung von F.K. Schmidt in Jena), J. Reine Angew. Math. 177 (1937), 215–223. https://eudml.org/doc/150015.
- R. Hartshorne, Algebraic Geometry, Springer, 1977. https://doi.org/10.1007/978-1-4757-3849-0.
- M.Ashiwara, D-Modules and Microlocal Calculus, American Mathematical Society, 2003.
- H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986. https://doi.org/10.1017/CBO9781139171762.
- O. Zariski, P. Samuel, Commutative Algebra, Springer, 1975. https://doi.org/10.1007/978-3-662-29244-0.
- A. Nijenhuis, R.W. Richardson, Cohomology and Deformations in Graded Lie Algebras, Bull. Am. Math. Soc. 72 (1966), 1–29. https://doi.org/10.1090/s0002-9904-1966-11401-5.
- N. Jacobson, Lie Algebras, Dover Publications, 1979.
- C. Kassel, Quantum Groups, Springer, 1995. https://doi.org/10.1007/978-1-4612-0783-2.
- V.P. Palamodov, Deformations of Complex Spaces, Russ. Math. Surv. 31 (1976), 129–197. https://doi.org/10.1070/rm1976v031n03abeh001549.
- J.L. Loday, Cyclic Homology, Springer, 1998. https://doi.org/10.1007/978-3-662-11389-9.