Predicting Financial Distress in ASEAN Banking: A Logistic Regression Approach

Main Article Content

Evaliati Amaniyah, Abdul Mongid, Nadia Asandimitra Haryono

Abstract

Banking sector stability is crucial to a country's economy, but the global financial crisis and macroeconomic pressures such as the COVID-19 pandemic have heightened the risk of financial distress. This study aims to develop a prediction model for banking financial distress in ASEAN countries by combining CAMEL indicators and macroeconomic variables. Using panel data from 435 banks during the period 2017–2021 and logistic regression analysis, this study shows that the capital adequacy ratio (CAR) and return on assets (ROA) have a negative effect on the likelihood of distress, while the non-performing loan ratio (NPL) and exchange rate have a positive effect. The model that combines macroeconomic variables shows higher prediction accuracy than the model that only uses internal financial indicators. Model 1, excluding macroeconomic variables, correctly predicted 67.14% of the sample banks, while Model 2, including macroeconomic variables, increased the prediction to 72.01%. This study expands the literature on early warning systems using empirical evidence from ASEAN countries and contributes to the applied analytics domain by proposing logistic models relevant for policy-making and banking regulation.

Article Details

References

  1. S. Shrivastava, P.M. Jeyanthi, S. Singh, Failure Prediction of Indian Banks Using SMOTE, Lasso Regression, Bagging and Boosting, Cogent Econ. Financ. 8 (2020), 1729569. https://doi.org/10.1080/23322039.2020.1729569.
  2. F. Climent, A. Momparler, P. Carmona, Anticipating Bank Distress in the Eurozone: An Extreme Gradient Boosting Approach, J. Bus. Res. 101 (2019), 885-896. https://doi.org/10.1016/j.jbusres.2018.11.015.
  3. A. Citterio, Bank Failure Prediction Models: Review and Outlook, Socioecon. Plan. Sci. 92 (2024), 101818. https://doi.org/10.1016/j.seps.2024.101818.
  4. World Bank, Search: Asset Ratio to Gross Domestic Product, Accessed: Jun. 15, 2025. https://data360.worldbank.org/en/search?tab=indicator&search=Asset+Ratio+to+Gross+Domestic+Product+.
  5. A. Samad, V.S. Armstrong, Bootstrap-DEA Management Efficiency and Early Prediction of Bank Failure: Evidence from 2008-2009 U.S. Bank Failures, Cent. Bank Rev. 22 (2022), 119-127. https://doi.org/10.1016/j.cbrev.2022.08.002.
  6. D. Alaminos, A. del Castillo, M.Á. Fernández, A Global Model for Bankruptcy Prediction, PLOS ONE 11 (2016), e0166693. https://doi.org/10.1371/journal.pone.0166693.
  7. T.M. Alam, K. Shaukat, M. Mushtaq, Y. Ali, M. Khushi, et al., Corporate Bankruptcy Prediction: An Approach Towards Better Corporate World, Comput. J. 64 (2020), 1731-1746. https://doi.org/10.1093/comjnl/bxaa056.
  8. M.Á. Fernández-Gámez, J.A.C. Soria, J.A.C. Santos, D. Alaminos, European Country Heterogeneity in Financial Distress Prediction: An Empirical Analysis with Macroeconomic and Regulatory Factors, Econ. Model. 88 (2020), 398-407. https://doi.org/10.1016/j.econmod.2019.09.050.
  9. A. Citterio, T. King, The Role of Environmental, Social, and Governance (ESG) in Predicting Bank Financial Distress, Financ. Res. Lett. 51 (2023), 103411. https://doi.org/10.1016/j.frl.2022.103411.
  10. L. Khoja, M. Chipulu, R. Jayasekera, Analysis of Financial Distress Cross Countries: Using Macroeconomic, Industrial Indicators and Accounting Data, Int. Rev. Financ. Anal. 66 (2019), 101379. https://doi.org/10.1016/j.irfa.2019.101379.
  11. B. Pham Vo Ninh, T. Do Thanh, D. Vo Hong, Financial Distress and Bankruptcy Prediction: An Appropriate Model for Listed Firms in Vietnam, Econ. Syst. 42 (2018), 616-624. https://doi.org/10.1016/j.ecosys.2018.05.002.
  12. A. Constantin, T.A. Peltonen, P. Sarlin, Network Linkages to Predict Bank Distress, J. Financ. Stab. 35 (2018), 226-241. https://doi.org/10.1016/j.jfs.2016.10.011.
  13. A.F. Forgione, C. Migliardo, Forecasting Distress in Cooperative Banks: The Role of Asset Quality, Int. J. Forecast. 34 (2018), 678-695. https://doi.org/10.1016/j.ijforecast.2018.04.008.
  14. M. Pekkaya, F. Erol, Generating Priority Series via AHP for Conducting Statistical Tests on CAMELS Dimension Priorities in Evaluating Bank Failure Risk, J. Intell. Fuzzy Syst. 37 (2019), 8131-8146. https://doi.org/10.3233/jifs-190574.
  15. A. Mongid, Accounting data and bank future failure: A model for Indonesia, Indones. J. Account. Res. 5 (2002), 1–15.
  16. F. Betz, S. Oprică, T.A. Peltonen, P. Sarlin, Predicting Distress in European Banks, J. Bank. Financ. 45 (2014), 225-241. https://doi.org/10.1016/j.jbankfin.2013.11.041.
  17. A.I. Maghyereh, B. Awartani, Bank Distress Prediction: Empirical Evidence from the Gulf Cooperation Council Countries, Res. Int. Bus. Financ. 30 (2014), 126-147. https://doi.org/10.1016/j.ribaf.2013.07.001.
  18. D.S. Mare, Contribution of Macroeconomic Factors to the Prediction of Small Bank Failures, J. Int. Financ. Mark. Inst. Money 39 (2015), 25-39. https://doi.org/10.1016/j.intfin.2015.05.005.
  19. Z.U.R. Khokher, S.M.B.S.J. Alhabshi, Predicting Distress in Islamic Banks: The Effectiveness of Capital Measures in CAMELS Framework, J. Rev. Glob. Econ. 8 (2019), 643-661. https://doi.org/10.6000/1929-7092.2019.08.56.
  20. A. Anggraeni, A. Mongid, Suhartono, Prediction Models for Bank Failure: ASEAN Countries, J. Ekon. Malays. 54 (2020), 4. https://doi.org/10.17576/jem-2020-5402-04.
  21. S. Miller, E. Olson, T.J. Yeager, The Relative Contributions of Equity and Subordinated Debt Signals as Predictors of Bank Distress During the Financial Crisis, J. Financ. Stab. 16 (2015), 118-137. https://doi.org/10.1016/j.jfs.2015.01.001.
  22. L. Chiaramonte, B. Casu, Capital and Liquidity Ratios and Financial Distress. Evidence from the European Banking Industry, Br. Account. Rev. 49 (2017), 138-161. https://doi.org/10.1016/j.bar.2016.04.001.
  23. N.I. Papanikolaou, A Dual Early Warning Model of Bank Distress, Econ. Lett. 162 (2018), 127-130. https://doi.org/10.1016/j.econlet.2017.10.028.
  24. H.H. Le, J. Viviani, Predicting Bank Failure: An Improvement by Implementing a Machine-Learning Approach to Classical Financial Ratios, Res. Int. Bus. Financ. 44 (2018), 16-25. https://doi.org/10.1016/j.ribaf.2017.07.104.
  25. P. Carmona, F. Climent, A. Momparler, Predicting Failure in the U.S. Banking Sector: An Extreme Gradient Boosting Approach, Int. Rev. Econ. Financ. 61 (2019), 304-323. https://doi.org/10.1016/j.iref.2018.03.008.
  26. T. Chen, C. Lee, C. Shen, Liquidity Indicators, Early Warning Signals in Banks, and Financial Crises, North Am. J. Econ. Financ. 62 (2022), 101732. https://doi.org/10.1016/j.najef.2022.101732.
  27. N. Aydin, N. Sahin, M. Deveci, D. Pamucar, Prediction of Financial Distress of Companies with Artificial Neural Networks and Decision Trees Models, Mach. Learn. Appl. 10 (2022), 100432. https://doi.org/10.1016/j.mlwa.2022.100432.
  28. D.V. Dinh, R.J. Powell, D.H. Vo, Forecasting Corporate Financial Distress in the Southeast Asian Countries: A Market-Based Approach, J. Asian Econ. 74 (2021), 101293. https://doi.org/10.1016/j.asieco.2021.101293.
  29. F. Shen, Y. Liu, R. Wang, W. Zhou, A Dynamic Financial Distress Forecast Model with Multiple Forecast Results Under Unbalanced Data Environment, Knowl.-Based Syst. 192 (2020), 105365. https://doi.org/10.1016/j.knosys.2019.105365.
  30. K.M. Shahdadi, A.A.A. Rostamy, S.J. Sadeghi Sharif, M.H. Ranjbar, Intellectual Capital, Liquidity, and Bankruptcy Likelihood, J. Corp. Account. Financ. 31 (2020), 21-32. https://doi.org/10.1002/jcaf.22460.
  31. S. Ashraf, E. G. S. Félix, Z. Serrasqueiro, Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?, J. Risk Financ. Manag. 12 (2019), 55. https://doi.org/10.3390/jrfm12020055.
  32. A.H. Ahmad, What Factors Discriminate Reorganized and Delisted Distressed Firms: Evidence from Malaysia, Financ. Res. Lett. 29 (2019), 50-56. https://doi.org/10.1016/j.frl.2019.03.010.
  33. R. Geng, I. Bose, X. Chen, Prediction of Financial Distress: An Empirical Study of Listed Chinese Companies Using Data Mining, Eur. J. Oper. Res. 241 (2015), 236-247. https://doi.org/10.1016/j.ejor.2014.08.016.
  34. J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson, Multivariate Data Analysis, Cengage, 2019.
  35. N.D. Trung, B.D. Thanh, B.N.M. Phuong, L.T. Lan, Factors Influencing the Financial Distress Probability of Vietnam Enterprises, in: Studies in Systems, Decision and Control, Springer, Cham, 2022: pp. 635--649. https://doi.org/10.1007/978-3-030-98689-6_42.
  36. J. Bersch, H. Degryse, T. Kick, I. Stein, The Real Effects of Bank Distress: Evidence from Bank Bailouts in Germany, J. Corp. Financ. 60 (2020), 101521. https://doi.org/10.1016/j.jcorpfin.2019.101521.
  37. C. Lin, S. Yang, Bank Fundamentals, Economic Conditions, and Bank Failures in East Asian Countries, Econ. Model. 52 (2016), 960-966. https://doi.org/10.1016/j.econmod.2015.10.035.
  38. A.N. Berger, B. Imbierowicz, C. Rauch, The Roles of Corporate Governance in Bank Failures during the Recent Financial Crisis, J. Money Credit. Bank. 48 (2016), 729-770. https://doi.org/10.1111/jmcb.12316.
  39. S. Cleary, G. Hebb, An Efficient and Functional Model for Predicting Bank Distress: In and Out of Sample Evidence, J. Bank. Financ. 64 (2016), 101-111. https://doi.org/10.1016/j.jbankfin.2015.12.001.
  40. R.A. Cox, G.W. Wang, Predicting the US Bank Failure: A Discriminant Analysis, Econ. Anal. Polic. 44 (2014), 202-211. https://doi.org/10.1016/j.eap.2014.06.002.
  41. Z. Affes, R. Hentati-Kaffel, Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis, Comput. Econ. 54 (2017), 199-244. https://doi.org/10.1007/s10614-017-9698-0.
  42. H.A. Montgomery, W. Santoso, D.S. Besar, T. Hanh, Coordinated Failure? A Cross-Country Bank Failure Prediction Model, SSRN (2005). https://doi.org/10.2139/ssrn.1905857.
  43. S.R. Al-Manaseer, The Impact of Debt Ratio on Financial Stability Through the Mediating Role of Capital Adequacy: Evidence from the Regulatory Framework of the Banking Industry, J. Gov. Regul. 13 (2024), 247-256. https://doi.org/10.22495/jgrv13i4siart3.
  44. C. Filippopoulou, E. Galariotis, S. Spyrou, An Early Warning System for Predicting Systemic Banking Crises in the Eurozone: A Logit Regression Approach, J. Econ. Behav. Organ. 172 (2020), 344-363. https://doi.org/10.1016/j.jebo.2019.12.023.
  45. C.W. Calomiris, M. Jaremski, D.C. Wheelock, Interbank Connections, Contagion and Bank Distress in the Great Depression✰, J. Financ. Intermediation 51 (2022), 100899. https://doi.org/10.1016/j.jfi.2020.100899.
  46. Z. Li, J. Crook, G. Andreeva, Y. Tang, Predicting the Risk of Financial Distress Using Corporate Governance Measures, Pacific-Basin Financ. J. 68 (2021), 101334. https://doi.org/10.1016/j.pacfin.2020.101334.
  47. D. Liang, C. Tsai, H. Lu, L. Chang, Combining Corporate Governance Indicators with Stacking Ensembles for Financial Distress Prediction, J. Bus. Res. 120 (2020), 137-146. https://doi.org/10.1016/j.jbusres.2020.07.052.