The Moderating Effect of Rural Policy Interventions on Comprehensive Rural Revitalization in China

Main Article Content

Longfeng Liang, Sutana Boonlua, Anupong Sukprasert

Abstract

This research examines how rural technology acceptance and rural policy interventions influence comprehensive rural revitalization in China. It draws on the resource-based view (RBV), the technology adoption model (TAM), and development economics theory (DET) to investigate the roles of digital transformation across industry, ecology, culture, governance, and well-being domains. Using panel data from 30 provinces (2010–2023), the analysis employs fixed-effects models to estimate direct and moderating effects. The results show that rural technology acceptance can significantly enhance recovery outcomes. Rural policy interventions will strengthen this effect in regions with high rural technology acceptation and adoption, but will be ineffective or detrimental if digital readiness is low. The results highlight the importance of strong digital infrastructure, skills development, and integrated policy strategies to achieve sustainable rural transformation. The limitations and suggestions for future research also provides in the latter.

Article Details

References

  1. Grand View Research, Digital Transformation Market Size, Share & Trends Analysis Report by Type (Solution, Service), by Deployment (Hosted, On-premise), by Enterprise Size (SME, Large Enterprises), by End-use, by Region, and Segment Forecasts, 2025 - 2030. https://www.grandviewresearch.com/industry-analysis/digital-transformation-market.
  2. S. Kraus, S. Durst, J.J. Ferreira, P. Veiga, N. Kailer, A. Weinmann, Digital Transformation in Business and Management Research: An Overview of the Current Status Quo, Int. J. Inf. Manag. 63 (2022), 102466. https://doi.org/10.1016/j.ijinfomgt.2021.102466.
  3. J. Zhang, W. Zhang, Harnessing Digital Technologies for Rural Industrial Integration: A Pathway to Sustainable Growth, Systems 12 (2024), 564. https://doi.org/10.3390/systems12120564.
  4. O. Takhumova, Rural Development as a Leading Factor in Economic Growth, Adv. Soc. Sci. Educ. Hum. Res. 441 (2020), 275-279.
  5. A.T. Yu, Y. Wu, J. Shen, X. Zhang, L. Shen, L. Shan, The Key Causes of Urban-Rural Conflict in China, Habitat Int. 49 (2015), 65-73. https://doi.org/10.1016/j.habitatint.2015.05.009.
  6. J. Wen, H. Chen, Green Innovation and the Urban–rural Income Gap: Empirical Evidence from China, Sustainability 17 (2025), 2106. https://doi.org/10.3390/su17052106.
  7. Y. Liu, Y. Zang, Y. Yang, China’s Rural Revitalization and Development: Theory, Technology and Management, J. Geogr. Sci. 30 (2020), 1923-1942. https://doi.org/10.1007/s11442-020-1819-3.
  8. Z. Fan, Z. Zhou, W. Zhang, Game Analysis of Enterprise Data Sharing from a Supply Chain Perspective, Heliyon 10 (2024), e25678. https://doi.org/10.1016/j.heliyon.2024.e25678.
  9. S.G. Rabinowicz, V. Chinapah, Good Practices in Pursuit of Sustainable Rural Transformation, J. Educ. Res. 4 (2014), 7-23. https://doi.org/10.3126/jer.v4i2.12384.
  10. T.S. Ezeudu, E.N. Obimbua, Enhancing Rural Market Access and Value Chain Integration for Sustainable Agricultural Development in Nigeria: A Study of Constraints, Strategies, and Implications, Int. J. Res. Innov. Soc. Sci. 8 (2024), 528-550. https://doi.org/10.47772/ijriss.2024.803039.
  11. Z. Li, Y. Wang, L. Wang, L. Xu, H. Chen, C. Yao, Study on the Impact of Rural Tourism Construction Projects on Farmers’ Livelihood Capital and Livelihood Options, Agriculture 14 (2024), 1024. https://doi.org/10.3390/agriculture14071024.
  12. National Bureau of Statistics of China, Bulletin by the National Bureau of Statistics of China on the revision of annual GDP data for 2023, National Bureau of Statistics of China, (2024).
  13. D. Amaglobeli, T. Benson, M.T. Mogues, Agricultural Producer Subsidies: Navigating Challenges and Policy Considerations, International Monetary Fund, (2024).
  14. M. Javaid, A. Haleem, R.P. Singh, A.K. Sinha, Digital Economy to Improve the Culture of Industry 4.0: A Study on Features, Implementation and Challenges, Green Technol. Sustain. 2 (2024), 100083. https://doi.org/10.1016/j.grets.2024.100083.
  15. D. Hooks, Z. Davis, V. Agrawal, Z. Li, Exploring Factors Influencing Technology Adoption Rate at the Macro Level: A Predictive Model, Technol. Soc. 68 (2022), 101826. https://doi.org/10.1016/j.techsoc.2021.101826.
  16. A. Kosasih, E. Sulaiman, Digital Transformation in Rural Settings: Unlocking Opportunities for Sustainable Economic Growth and Community Empowerment, J. Sustain. Tour. Entrep. 5 (2024), 129-143. https://doi.org/10.35912/joste.v5i2.2278.
  17. M.M. Feliciano-Cestero, N. Ameen, M. Kotabe, J. Paul, M. Signoret, Is Digital Transformation Threatened? A Systematic Literature Review of the Factors Influencing Firms’ Digital Transformation and Internationalization, J. Bus. Res. 157 (2023), 113546. https://doi.org/10.1016/j.jbusres.2022.113546.
  18. J. Liu, F. Li, Rural Revitalization Driven by Digital Infrastructure: Mechanisms and Empirical Verification, J. Digit. Econ. 3 (2024), 103-116. https://doi.org/10.1016/j.jdec.2025.01.002.
  19. J. Barney, Firm Resources and Sustained Competitive Advantage, J. Manag. 17 (1991), 99-120. https://doi.org/10.1177/014920639101700108.
  20. A. Kosasih, E. Sulaiman, Digital Transformation in Rural Settings: Unlocking Opportunities for Sustainable Economic Growth and Community Empowerment, J. Sustain. Tour. Entrep. 5 (2024), 129-143. https://doi.org/10.35912/joste.v5i2.2278.
  21. J. Zhao, J. Lin, S. Wang, F. Yang, Y. Dai, X. Li, Exploring Rural Resident’s Digital Capital Against External Shocks in Digital Transformation, Cover. Comput. 27 (2024), 52. https://doi.org/10.1007/s10791-024-09494-x.
  22. M.S. Karim, S. Nahar, M. Demirbag, Resource-based Perspective on ICT Use and Firm Performance: A Meta-Analysis Investigating the Moderating Role of Cross-Country ICT Development Status, Log. Cast. Soc. Chang. 179 (2022), 121626. https://doi.org/10.1016/j.techfore.2022.121626.
  23. D. Hooks, Z. Davis, V. Agrawal, Z. Li, Exploring Factors Influencing Technology Adoption Rate at the Macro Level: A Predictive Model, Technol. Soc. 68 (2022), 101826. https://doi.org/10.1016/j.techsoc.2021.101826.
  24. B. Zhang, Digital Infrastructure and Rural Revitalization: Based on the Context of New Infrastructure in Education, Adv. Econ. Manag. Politi Sci. 132 (2024), 25-33. https://doi.org/10.54254/2754-1169/2024.18439.
  25. F.D. Davis, Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Quart. 13 (1989), 319. https://doi.org/10.2307/249008.
  26. Yuhefizar, R. Syaljumairi, E. Asri, Sarmiadi, R. Watrianthos, Digital Transformation in Rural Governance: Tam Analysis of E-Government Adoption in Indonesia, Int. Res. J. Discipl. Scope 06 (2025), 183-195. https://doi.org/10.47857/irjms.2025.v06i02.03916.
  27. T. Cen, S. Lin, Q. Wu, How Does Digital Economy Affect Rural Revitalization? The Mediating Effect of Industrial Upgrading, Sustainability 14 (2022), 16987. https://doi.org/10.3390/su142416987.
  28. Y. Lu, J. Zhuang, C. Yang, L. Li, M. Kong, How the Digital Economy Promotes Urban–rural Integration Through Optimizing Factor Allocation: Theoretical Mechanisms and Evidence from China, Front. Stain. Food Syst. 9 (2025), 1494247. https://doi.org/10.3389/fsufs.2025.1494247.
  29. Y. Wang, D. Ye, Enhancing Rural Revitalization in China Through Digital Economic Transformation and Green Entrepreneurship, Sustainability 16 (2024), 4147. https://doi.org/10.3390/su16104147.
  30. S. Wang, R. Zhang, Y. Yang, J. Chen, S. Yang, Has Enterprise Digital Transformation Facilitated the Carbon Performance in Industry 4.0 Era? Evidence from Chinese Industrial Enterprises, Comput. Ind. Engine 184 (2023), 109576. https://doi.org/10.1016/j.cie.2023.109576.
  31. A. Daouia, A. Ruiz-Gazen, eds., Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-73249-3.
  32. S. Nazlioglu, J. Lee, M. Tieslau, C. Karul, Y. You, Smooth Structural Changes and Common Factors in Nonstationary Panel Data: An Analysis of Healthcare Expenditures, Econ. Rev. 42 (2022), 78-97. https://doi.org/10.1080/07474938.2022.2156740.
  33. A. Levin, C. Lin, C. James Chu, Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties, J. Econ. 108 (2002), 1-24. https://doi.org/10.1016/s0304-4076(01)00098-7.
  34. J.A. Hausman, Specification Tests in Econometrics, Econometrica 46 (1978), 1251–1271. https://doi.org/10.2307/1913827.
  35. L.C. Adkins, R.C. Hill, Using Stata for Principles of Econometrics, Fourth Edition, John Wiley & Sons, 2012.
  36. E.R. Babbie, The Practice of Social Research, Cengage AU, (2020).
  37. J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Routledge, 2013. https://doi.org/10.4324/9780203771587.
  38. M.K. Cain, Z. Zhang, K. Yuan, Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation, Behav. Res. Method 49 (2016), 1716-1735. https://doi.org/10.3758/s13428-016-0814-1.
  39. Z. Peng, T. Dan, Digital Dividend or Digital Divide? Digital Economy and Urban-Rural Income Inequality in China, Telecommun. Policy 47 (2023), 102616. https://doi.org/10.1016/j.telpol.2023.102616.
  40. A. Cattaneo, A. Adukia, D.L. Brown, L. Christiaensen, D.K. Evans, A. Haakenstad, T. McMenomy, M. Partridge, S. Vaz, D.J. Weiss, Economic and Social Development Along the Urban–rural Continuum: New Opportunities to Inform Policy, World Dev. 157 (2022), 105941. https://doi.org/10.1016/j.worlddev.2022.105941.
  41. P.H. Westfall, Kurtosis as Peakedness, 1905–2014. R.I.P., Am. Stat. 68 (2014), 191-195. https://doi.org/10.1080/00031305.2014.917055.
  42. T. Lumley, P. Diehr, S. Emerson, L. Chen, The Importance of the Normality Assumption in Large Public Health Data Sets, Annu. Rev. Public Health 23 (2002), 151-169. https://doi.org/10.1146/annurev.publhealth.23.100901.140546.
  43. J. Agyeman, Introducing Just Sustainabilities: Policy, Planning, and Practice, Zed Books, London, 2013.
  44. E.L. Widarni, S. Bawono, Human Capital, Technology, and Economic Growth: A Case Study of Indonesia, J. Asian Finance Econ. Bus. 8 (2021), 29–35. https://doi.org/10.13106/JAFEB.2021.VOL8.NO5.0029.
  45. J. Lee, B. Kim, S. Yoon, A Conceptual Digital Policy Framework via Mixed-Methods Approach: Navigating Public Value for Value-Driven Digital Transformation, Gov. Forma Quart. 41 (2024), 101961. https://doi.org/10.1016/j.giq.2024.101961.
  46. R.M. O’brien, A Caution Regarding Rules of Thumb for Variance Inflation Factors, Qual. Quant. 41 (2007), 673-690. https://doi.org/10.1007/s11135-006-9018-6.
  47. B.H. Baltagi, Econometric Analysis of Panel Data, John Wiley & Sons, (2008).
  48. M. Castillo-Vergara, A. Álvarez-Marín, E. Villavicencio Pinto, L.E. Valdez-Juárez, Technological Acceptance of Industry 4.0 by Students from Rural Areas, Electronics 11 (2022), 2109. https://doi.org/10.3390/electronics11142109.
  49. O. Owolarafe, O. Oni, Modern Mill Technology and Centralised Processing System, an Alternative for Improving Performance of Palm Oil Mills in Abia State, Nigeria, Technol. Soc. 33 (2011), 12-22. https://doi.org/10.1016/j.techsoc.2011.03.002.
  50. X. Deng, M. Huang, R. Peng, The Impact of Digital Economy on Rural Revitalization: Evidence from Guangdong, China, Heliyon 10 (2024), e28216. https://doi.org/10.1016/j.heliyon.2024.e28216.
  51. J. Zhang, W. Zhang, The Impact Mechanism of Digital Rural Construction on Land Use Efficiency: Evidence from 255 Cities in China, Sustainability 17 (2024), 45. https://doi.org/10.3390/su17010045.
  52. Y. Wang, D. Ye, Enhancing Rural Revitalization in China Through Digital Economic Transformation and Green Entrepreneurship, Sustainability 16 (2024), 4147. https://doi.org/10.3390/su16104147.
  53. K. Rijswijk, L. Klerkx, M. Bacco, F. Bartolini, E. Bulten, L. Debruyne, J. Dessein, I. Scotti, G. Brunori, Digital Transformation of Agriculture and Rural Areas: A Socio-Cyber-Physical System Framework to Support Responsibilisation, J. Rural. Studi 85 (2021), 79-90. https://doi.org/10.1016/j.jrurstud.2021.05.003.