Mitigating Risks: A Hybrid Autoregressive Integrated Moving Average-Artificial Neural Network (ARIMA-ANN) Methodology for Exchange Rate Volatility
Main Article Content
Abstract
This study aims to estimate the rupiah exchange rate against the US dollar by employing a hybrid ARIMA-Artificial Neural Network (ARIMA-ANN) methodology, with export treated as an exogenous variable. It evaluates the precision of the model against a non-hybrid model. Multiple types of research have demonstrated the efficacy of the hybrid ARIMA-ANN model in minimizing errors, thereby justifying its selection. The hybrid ARIMA-ANN methodology employs ANN to discern nonlinear patterns in time series data and ARIMA to detect linear patterns. The results of this research indicate that the hybrid ARIMA-ANN model yields more precise forecasts. The RMSE value of 0.025 contrasts with the RMSE of 0.045 for the ARIMA model and 0.035 for the ANN. The significance of projecting exchange rate volatility holds both practical and scholarly value. Our study offers new insight by thoroughly analyzing the predictive capacity of financial and macroeconomic variables related to future exchange rate volatility.
Article Details
References
- R.F. Engle, Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica 50 (1982), 987-1008. https://doi.org/10.2307/1912773.
- T. Bollerslev, Generalized Autoregressive Conditional Heteroskedasticity, J. Econ. 31 (1986), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1.
- S.J. Taylor, Modelling Financial Time Series, World Scientific, 2008. https://doi.org/10.1142/6578.
- F. Corsi, A Simple Approximate Long-Memory Model of Realized Volatility, J. Financ. Econ. 7 (2008), 174-196. https://doi.org/10.1093/jjfinec/nbp001.
- G.W. Schwert, Why Does Stock Market Volatility Change Over Time?, J. Financ. 44 (1989), 1115-1153. https://doi.org/10.1111/j.1540-6261.1989.tb02647.x.
- S. Mittnik, N. Robinzonov, M. Spindler, Stock Market Volatility: Identifying Major Drivers and the Nature of Their Impact, J. Bank. Financ. 58 (2015), 1-14. https://doi.org/10.1016/j.jbankfin.2015.04.003.
- N. Nonejad, Forecasting Aggregate Stock Market Volatility Using Financial and Macroeconomic Predictors: Which Models Forecast Best, When and Why?, J. Empir. Financ. 42 (2017), 131-154. https://doi.org/10.1016/j.jempfin.2017.03.003.
- C. Chiu, R.D. Harris, E. Stoja, M. Chin, Financial Market Volatility, Macroeconomic Fundamentals and Investor Sentiment, J. Bank. Financ. 92 (2018), 130-145. https://doi.org/10.1016/j.jbankfin.2018.05.003.
- R.P. Pradhan, R. Kumar, Forecasting Exchange Rate in India: An Application of Artificial Neural Network Model, J. Math. Res. 2 (2010), 111–117. https://doi.org/10.5539/jmr.v2n4p111.
- A.R. Wijaya, Peramalan Nilai Tukar Rupiah Terhadap Dollar Amerika Menggunakan Model Arima, Maj. Ilm. Mat. Stat. 23 (2023), 188. https://doi.org/10.19184/mims.v23i2.38660.
- N.A. Wijoyo, Peramalan Nilai Tukar Rupiah Terhadap USD Dengan Menggunakan Model GARCH, Kaji. Ekon. Keuang. 20 (2016), 169-189. https://doi.org/10.31685/kek.v20i2.187.
- M.D. Angelo, I. Fadhiilrahman, Y. Purnama, Comparative Analysis of Arima and Prophet Algorithms in Bitcoin Price Forecasting, Procedia Comput. Sci. 227 (2023), 490-499. https://doi.org/10.1016/j.procs.2023.10.550.
- P.R. Iswardani, M. Sudarma, L. Jasa, Peramalan Nilai Tukar Rupiah Terhadap Mata Uang Negara Asia Menggunakan Metode Quantum Neural Network, Maj. Ilm. Teknol. Elektro 20 (2021), 153-160. https://doi.org/10.24843/mite.2021.v20i01.p18.
- M.R. Susila, M. Jamil, B.H. Santoso, Akurasi Model Hybrid Arima-Artificial Neural Network Dengan Model Non Hybrid Pada Peramalan Peredaran Uang Elektronik Di Indonesia, Jambura J. Math. 5 (2023), 46-58. https://doi.org/10.34312/jjom.v5i1.14889.
- A. Arintoko, L.S. Badriah, D. Rahajuni, N. Kadarwati, R. Priyono, M.A. Hasan, Asymmetric Effects of World Energy Prices on Inflation in Indonesia, Int. J. Energy Econ. Polic. 13 (2023), 185-193. https://doi.org/10.32479/ijeep.14731.
- A. Arintoko, L.S. Badriah, N. Kadarwati, The Asymmetric Effects of Global Energy and Food Prices, Exchange Rate Dynamics, and Monetary Policy Conduct on Inflation in Indonesia, Ekonomika 103 (2024), 66-89. https://doi.org/10.15388/ekon.2024.103.2.4.
- P. Jana, R. Rokhimi, I.R. Prihatiningsih, Peramalan Kurs Idr Terhadap Usd Menggunakan Double Moving Averages Dan Double Exponential Smoothing, J. Deriv.: J. Mat. Pendidik. Mat. 2 (2019), 48-55. https://doi.org/10.31316/j.derivat.v2i2.132.
- E. Dave, A. Leonardo, M. Jeanice, N. Hanafiah, Forecasting Indonesia Exports Using a Hybrid Model Arima-Lstm, Procedia Comput. Sci. 179 (2021), 480-487. https://doi.org/10.1016/j.procs.2021.01.031.
- L.C.D. Susasimy, W. Sulistijanti, Peramalan kurs Dolar Amerika Serikat dan Riyal Arab Saudi terhadap Rupiah dengan Neural Network Conjugate Gradient Polak Ribiere, in: Proceeding of the 14th University Research Colloquium (2021): Bidang Ekonomi & Bisnis, 136–147, URECOL. https://www.repository.urecol.org/index.php/proceeding/article/view/1679.
- P.E. Eniayewu, G.T. Samuel, J.D. Joshua, B.T. Samuel, B.S. Dogo, et al. Forecasting Exchange Rate Volatility with Monetary Fundamentals: A GARCH-MIDAS Approach, Sci. Afr. 23 (2024), e02101. https://doi.org/10.1016/j.sciaf.2024.e02101.
- R.R. Amelia, F. Fitri, Peramalan Kurs Rupiah Terhadap Dolar Amerika Menggunakan Jaringan Saraf Tiruan, J. Math. UNP 7 (2022), 1. https://doi.org/10.24036/unpjomath.v7i3.12564.
- M.M. Panda, S.N. Panda, P.K. Pattnaik, Exchange Rate Prediction using ANN and Deep Learning Methodologies: A Systematic Review, in: 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), IEEE, 2020, pp. 86-90. https://doi.org/https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181351.
- Y.A. Winata, S. Subanar, Model Peramalan Nilai Tukar Mata Uang Menggunakan Metode Hybrid GLARANN (Exchange Rates Forecasting Model Using GLARANN Hybrid Method), J. Mat. Thales 3 (2020), 1–20.
- F. Pérez-Hernández, A. Arévalo-de-Pablos, M. Camacho-Miñano, A Hybrid Model Integrating Artificial Neural Network with Multiple GARCH-Type Models and EWMA for Performing the Optimal Volatility Forecasting of Market Risk Factors, Expert Syst. Appl. 243 (2024), 122896. https://doi.org/10.1016/j.eswa.2023.122896.
- C. Bal, S. Demir, A Comparative Study of Artificial Neural Network Models for Forecasting USD/EUR-GBP-JPY-NOK Exchange Rates, J, Emerg. Issues Econ. Financ. Bank. 6 (2017), 2248–2259.
- C. Zhang, X. Zhou, Forecasting Value-at-Risk of Crude Oil Futures Using A Hybrid ARIMA–SVR–POT Model, Heliyon 10 (2024), e23358. https://doi.org/10.1016/j.heliyon.2023.e23358.
- R.R. Guerra, A. Vizziello, P. Savazzi, E. Goldoni, P. Gamba, Forecasting LoRaWAN RSSI Using Weather Parameters: A Comparative Study of ARIMA, Artificial Intelligence and Hybrid Approaches, Comput. Netw. 243 (2024), 110258. https://doi.org/10.1016/j.comnet.2024.110258.
- P. Escudero, W. Alcocer, J. Paredes, Recurrent Neural Networks and ARIMA Models for Euro/Dollar Exchange Rate Forecasting, Appl. Sci. 11 (2021), 5658. https://doi.org/10.3390/app11125658.
- U.S. Adi, B. Warsito, S. Suparti, Pemodelan Neuro Pada Return Nilai Tukar Rupiah Terhadap Dollar Amerika, J. Gaussian 5 (2016), 771–780.
- Y.D. Hidayah, Sugiman, Peramalan Nilai Tukar Rupiah Terhadap Dollar Amerika dengan Metode Fuzzy Time Series (FTS) Markov Chain, UNNES J. Math. 10 (2021), 85-95.
- G. Ardesfira, H.F. Zedha, I. Fazana, J. Rahmadhiyanti, S. Rahima, S. Anwar, Peramalan Nilai Tukar Rupiah Terhadap Dollar Amerika dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA), Jambura J. Probab. Stat. 3 (2022), 71–84. https://doi.org/10.34312/jjps.v3i2.15469.
- N.S. Maharani, Y. Angraini, M.A. Rahmawan, O.A. Putri, S. Kurniawan, T.A. Safitri, et al. Aplikasi Model ARIMA-GARCH Dalam Peramalan Data Nilai Tukar Rupiah Terhadap Dollar Tahun 2017 – 2022, J. Mat. Sains Tek. 24 (2023), 37–50. https://doi.org/10.33830/jmst.v24i1.4875.2023.
- Ü.Ç. Büyükşahin, Ş. Ertekin, Utilizing Empirical Mode Decomposition and A Novel ARIMA-ANN Hybrid Approach to Increase the Forecasting Accuracy of Time Series Data., Neurocomputing 361 (2019), 151-163. https://doi.org/10.1016/j.neucom.2019.05.099.
- G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, (1976).
- R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, Otexts, (2021).
- G.P. Zhang, Time Series Forecasting Using A Hybrid ARIMA and Neural Network Model. Neurocomputing 50 (2003), 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0.
- D.E. Rumelhart, G.E. Hinton, R.J Williams, Learning Representations by Back-Propagating Errors. Nature 323 (1986), 533–536. https://doi.org/10.1038/323533a0.
- F. Mubarok, I. Purnamasari, D. Yuniarti, Peramalan Kurs Rupiah Terhadap Dolar Amerika Menggunakan Model Autoregressive Integrated Moving Average, J. Math. Theor. Appl. 6 (2024), 225–236. https://doi.org/10.31605/jomta.v6i2.4072.
- W.I.W. Adnan, N.A. Wahid, N.A. Majid, F.W. Jaafar, N.A. Ismail, Technology Integration in Implementing a Curriculum: Teachers’ Beliefs and Willingness to Change, J. Phys.: Conf. Ser. 1529 (2020), 052081. https://doi.org/10.1088/1742-6596/1529/5/052081.
- S.O. Odhiambo, C.O. Nyakundi, Modelling and Forecasting Currency Exchange Rates Using Hybrid Arima and Ann Models in High-Frequency Data, Asian J. Probab. Stat. 26 (2024), 121-136. https://doi.org/10.9734/ajpas/2024/v26i12689.
- M.S. Elmalky, Hybrid Model "ARIMA-ANN" Using for Forecasting Stock Index EGX30. J. Commer. Financ. 44 (2024), 166–189. https://doi.org/10.21608/caf.2024.373336.
- A.A. Alsuwaylimi, Comparison of ARIMA, ANN and Hybrid ARIMA-ANN Models for Time Series Forecasting, Inf. Sci. Lett. 12 (2023), 1003–1013. https://doi.org/10.18576/isl/120238.