Role of Thermal Radiations in MHD Micropolar Nanofluid Flow over a Stretching/Shrinking Surface: Triple Solutions with Stability Analysis
Main Article Content
Abstract
Enhancing thermal efficiency is one of the best strategies for optimizing energy resources. As a result, researchers have been working hard to develop novel ways to maximize the results of energy use. Researchers are becoming more and more interested in nanofluids because of their distinctive thermophysical characteristics and potential uses in thermal engineering systems, heating and cooling processes, nanotechnology, and biomedicine. This study presents a numerical investigation of heat and mass transfer analysis of micropolar nanofluid flow over a stretching/shrinking surface, by incorporating an inclined magnetic field, chemical reaction, and Soret effects. A suitable methodology is adopted to transform the governing boundary layer equations of fluid flow into dimensionless nonlinear ODEs. The stability analysis method is used to resolve coupled nonlinear differential equations with MATLAB software using the Bvp4c solver. Graphs are utilized to illustrate how dimensionless physical factors affect the velocity, temperature, and concentration patterns. It was concluded that increasing the values of the radiation parameter caused a decline in the temperature profile, whereas an increment in the Soret factor enhanced the temperature profile.
Article Details
References
- A.C. Eringen, Theory of Micropolar Elasticity, in: Microcontinuum Field Theories, Springer New York, New York, NY, 1999: pp. 101-248. https://doi.org/10.1007/978-1-4612-0555-5_5.
- M. Bilal, A. Saeed, T. Gul, W. Kumam, S. Mukhtar, et al., Parametric Simulation of Micropolar Fluid with Thermal Radiation Across a Porous Stretching Surface, Sci. Rep. 12 (2022), 2542. https://doi.org/10.1038/s41598-022-06458-3.
- N.G. Stepha, D.K. Jacob, Analysis on Physical Properties of Micropolar Nanofluid Past a Constantly Moving Porous Plate, IOP Conf. Ser.: Mater. Sci. Eng. 1206 (2021), 012004. https://doi.org/10.1088/1757-899x/1206/1/012004.
- P. Pasha, S. Mirzaei, M. Zarinfar, Application of Numerical Methods in Micropolar Fluid Flow and Heat Transfer in Permeable Plates, Alex. Eng. J. 61 (2022), 2663-2672. https://doi.org/10.1016/j.aej.2021.08.040.
- M. Turkyilmazoglu, Flow of a Micropolar Fluid Due to a Porous Stretching Sheet and Heat Transfer, Int. J. Nonlinear Mech. 83 (2016), 59-64. https://doi.org/10.1016/j.ijnonlinmec.2016.04.004.
- E.L.A. Fauzi, S. Ahmad, I. Pop, Flow Over a Permeable Stretching Sheet in Micropolar Nanofluids with Suction, AIP Conf. Proc. 1605 (2014), 428-433. https://doi.org/10.1063/1.4887627.
- H. Rosali, A. Ishak, I. Pop, Micropolar Fluid Flow Towards a Stretching/shrinking Sheet in a Porous Medium with Suction, Int. Commun. Heat Mass Transf. 39 (2012), 826-829. https://doi.org/10.1016/j.icheatmasstransfer.2012.04.008.
- S.U.S. Choi, Nanofluids: A New Field of Scientific Research and Innovative Applications, Heat Transf. Eng. 29 (2008), 429-431. https://doi.org/10.1080/01457630701850778.
- J. Buongiorno, L. Hu, Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications: Final Report, Nuclear Engineering Education Research (NEER) Program, Office of Scientific and Technical Information (OSTI), 2009. https://doi.org/10.2172/958216.
- K.R. Jahnavi, G.S. Hegde, A Review on Nano Fluid Production, Mathematical Modelling and Applications, J. Nanofluids 13 (2024), 269-305. https://doi.org/10.1166/jon.2024.2138.
- A. Svobodova-Sedlackova, A. Calderón, C. Barreneche, R. Salgado-Pizarro, P. Gamallo, et al., A Bibliometric Analysis of Research and Development of Nanofluids, J. Nanofluids 12 (2023), 157-172. https://doi.org/10.1166/jon.2023.1924.
- R. Barai, D. Kumar, A. Wankhade, Heat Transfer Performance of Nanofluids in Heat Exchanger: A Review, J. Therm. Eng. 9 (2023), 86-106. https://doi.org/10.18186/thermal.1243398.
- S. Kumar, A.A. Shaikh, H.B. Lanjwani, S.F. Shah, MHD Flow and Heat Transfer of Micropolar Nanofluid on a Linearly Stretching/shrinking Porous Surface, VFAST Trans. Math. 11 (2023), 141-154. https://doi.org/10.21015/vtm.v11i1.1456.
- L.A. Lund, Z. Omar, I. Khan, Mathematical Analysis of Magnetohydrodynamic (MHD) Flow of Micropolar Nanofluid Under Buoyancy Effects Past a Vertical Shrinking Surface: Dual Solutions, Heliyon 5 (2019), e02432. https://doi.org/10.1016/j.heliyon.2019.e02432.
- B. Mohanty, S. Jena, P.K. Pattnaik, MHD Nanofluid Flow Over Stretching/Shrinking Surface in Presence of Heat Radiation Using Numerical Method, Int. J. Emerg. Technol. 10 (2019), 119-125.
- H.R. Patel, A.S. Mittal, R.R. Darji, MHD Flow of Micropolar Nanofluid Over a Stretching/Shrinking Sheet Considering Radiation, Int. Commun. Heat Mass Transf. 108 (2019), 104322. https://doi.org/10.1016/j.icheatmasstransfer.2019.104322.
- S. Dero, A.M. Rohni, A. Saaban, MHD Micropolar Nanofluid Flow over an Exponentially Stretching/Shrinking Surface: Triple Solutions, J. Adv. Res. Fluid Mech. Therm. Sci. 56 (2019), 165-174.
- N. Fatima, W. Belhadj, K.S. Nisar, Usman, M.K. Alaoui, et al., Heat and Mass Transmission in a Boundary Layer Flow Due to Swimming of Motile Gyrotactic Microorganisms with Variable Wall Temperature Over a Flat Plate, Case Stud. Therm. Eng. 45 (2023), 102953. https://doi.org/10.1016/j.csite.2023.102953.
- T. Kebede, E. Haile, G. Awgichew, T. Walelign, Heat and Mass Transfer in Unsteady Boundary Layer Flow of Williamson Nanofluids, J. Appl. Math. 2020 (2020), 1890972. https://doi.org/10.1155/2020/1890972.
- R. Sharma, S. Tinker, B. Gireesha, B. Nagaraja, Effect of Convective Heat and Mass Conditions in Magnetohydrodynamic Boundary Layer Flow with Joule Heating and Thermal Radiation, Int. J. Appl. Mech. Eng. 25 (2020), 103-116. https://doi.org/10.2478/ijame-2020-0037.
- Z. Long, L. Liu, S. Yang, L. Feng, L. Zheng, Analysis of Marangoni Boundary Layer Flow and Heat Transfer with Novel Constitution Relationships, Int. Commun. Heat Mass Transf. 127 (2021), 105523. https://doi.org/10.1016/j.icheatmasstransfer.2021.105523.
- M. Ferdows, M. Shamshuddin, A.M. Rashad, M.G. Murtaza, S.O. Salawu, Three-Dimensional Boundary Layer Flow and Heat/mass Transfer Through Stagnation Point Flow of Hybrid Nanofluid, J. Eng. Appl. Sci. 71 (2024), 57. https://doi.org/10.1186/s44147-024-00388-9.
- M.S. Arif, W. Shatanawi, Y. Nawaz, Modified Finite Element Study for Heat and Mass Transfer of Electrical MHD Non-Newtonian Boundary Layer Nanofluid Flow, Mathematics 11 (2023), 1064. https://doi.org/10.3390/math11041064.
- H. Ullah, M. Shoaib, R.A. Khan, K.S. Nisar, M.A.Z. Raja, et al., Soft Computing Paradigm for Heat and Mass Transfer Characteristics of Nanofluid in Magnetohydrodynamic (MHD) Boundary Layer Over a Vertical Cone Under the Convective Boundary Condition, Int. J. Model. Simul. 45 (2023), 193-217. https://doi.org/10.1080/02286203.2023.2191586.
- K.A. Khan, A.R. Butt, N. Raza, Effects of Heat and Mass Transfer on Unsteady Boundary Layer Flow of a Chemical Reacting Casson Fluid, Results Phys. 8 (2018), 610-620. https://doi.org/10.1016/j.rinp.2017.12.080.
- P. Mondal, T.R. Mahapatra, R. Parveen, B.C. Saha, Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure, J. Nanofluids 13 (2024), 339-349. https://doi.org/10.1166/jon.2024.2116.
- M. Yasir, M. Khan, A. Alqahtani, M. Malik, Heat Generation/absorption Effects in Thermally Radiative Mixed Convective Flow of Zn-TiO2/H2O Hybrid Nanofluid, Case Stud. Therm. Eng. 45 (2023), 103000. https://doi.org/10.1016/j.csite.2023.103000.
- K. Thanesh Kumar, S. Kalyan, M. Kandagal, J.V. Tawade, U. Khan, et al., Influence of Heat Generation/Absorption on Mixed Convection Flow Field with Porous Matrix in a Vertical Channel, Case Stud. Therm. Eng. 47 (2023), 103049. https://doi.org/10.1016/j.csite.2023.103049.
- Y. Dharmendar Reddy, B. Shankar Goud, K.S. Nisar, B. Alshahrani, M. Mahmoud, et al., Heat Absorption/generation Effect on MHD Heat Transfer Fluid Flow Along a Stretching Cylinder with a Porous Medium, Alex. Eng. J. 64 (2023), 659-666. https://doi.org/10.1016/j.aej.2022.08.049.
- B.S. Goud, Heat Generation/absorption Influence on Steady Stretched Permeable Surface on MHD Flow of a Micropolar Fluid Through a Porous Medium in the Presence of Variable Suction/injection, Int. J. Thermofluids 7-8 (2020), 100044. https://doi.org/10.1016/j.ijft.2020.100044.
- F.A. Soomro, R.U. Haq, Q.M. Al-Mdallal, Q. Zhang, Heat Generation/Absorption and Nonlinear Radiation Effects on Stagnation Point Flow of Nanofluid Along a Moving Surface, Results Phys. 8 (2018), 404-414. https://doi.org/10.1016/j.rinp.2017.12.037.
- S. Kumar, A.A. Shaikh, H.B. Lanjwani, S.F. Shah, MHD Flow and Heat Transfer of Micropolar Nanofluid on a Linearly Stretching/shrinking Porous Surface, VFAST Trans. Math. 11 (2023), 141-154. https://doi.org/10.21015/vtm.v11i1.1456.
- S. Sharma, A. Dadheech, A. Parmar, J. Arora, Q. Al-Mdallal, et al., MHD Micro Polar Fluid Flow Over a Stretching Surface with Melting and Slip Effect, Sci. Rep. 13 (2023), 10715. https://doi.org/10.1038/s41598-023-36988-3.
- A.A. Khan, M.N. Khan, N.A. Ahammad, et al., Flow Investigation of Second Grade Micropolar Nanofluid with Porous Medium Over an Exponentially Stretching Sheet, J. Appl. Biomater. Funct. Mater. 20 (2022), 22808000221089782. https://doi.org/10.1177/22808000221089782.
- P. Pasha, S. Mirzaei, M. Zarinfar, Application of Numerical Methods in Micropolar Fluid Flow and Heat Transfer in Permeable Plates, Alex. Eng. J. 61 (2022), 2663-2672. https://doi.org/10.1016/j.aej.2021.08.040.
- N.H. Adilla Norzawary, S.K. Soid, A. Ishak, M.K. Anuar Mohamed, U. Khan, et al., Stability Analysis for Heat Transfer Flow in Micropolar Hybrid Nanofluids, Nanoscale Adv. 5 (2023), 5627-5640. https://doi.org/10.1039/d3na00675a.
- K. Rafique, G. Elkahlout, A.M. Saeed, Heat and Mass Transfer Analysis of Magnetized Micropolar Nanofluid Flow with Soret and Dufour Effects: Triple Solutions, Int. J. Anal. Appl. 23 (2025), 152. https://doi.org/10.28924/2291-8639-23-2025-152.
- S. Dero, A.M. Rohni, A. Saaban, I. Khan, Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces, Energies 12 (2019), 4529. https://doi.org/10.3390/en12234529.