A Note on Fixed Point Theory for Cyclic Weaker Meir-Keeler Function in Complete Metric Spaces
Main Article Content
Abstract
In this paper we consider, discuss, improve and complement recent fixed points results for so-called cyclical weaker Meir-Keeler functions, established by Chi-Ming Chen [Chi-Ming Chen, Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces, Fixed Point Theory Appl., 2012, 2012:17]. In fact, we prove that weaker Meir-Keeler notion is superuous in results.
Article Details
References
- S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922) 133-181.
- M. A. Alghamdi, A. Petrusel and N. Shahzad, A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl., 2012 (2012), Article ID 122.
- R. P. Agarwal, M. A. Alghamdi, D. O'Regan and N. Shahzad, Fixed point theory for cyclic weak Kannan type mappings, Journal of Indian Math. Soc. 81 (2014), 01-11.
- Chi-Ming Chen, Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Article ID 17.
- M. S. Jovanovi ´c, Generalized contractive mappings on compact metric spaces, Third mathematical conference of the Republic of Srpska, Trebinje 7 and 8 June 2013.
- E. Karapinar, Fixed point theory for cyclic weak φ-contraction, Appl. Math. Lett., 24 (2011) 822-825.
- E. Karapinar, K. Sadarangani, Corrigendum to ”Fixed point theory for cyclic weak φ-contraction” [Appl. Math. Lett. 24 (6)(2011) 822-825], Appl. Math. Lett., 25 (2012) 1582- 1584.
- S. Karpagam, S. Agarwal, Best proximity point theorems for cyclic orbital Meir-Keeler contractions maps, Nonlinear Anal., 74 (2011) 1040-1046.
- W. A. Kirk, P. S. Srinavasan, P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89.
- L. Mili ´cevi ´c, Contractive families on compact spaces, arXiv:1312.0587v1 [math.MG], 2, December 2013.
- H. K. Nashine, Cyclic generalized ψ-weakly contractive mappings and fixed point results with applications to integral equations, Nonlinear Anal., 75 (2012) 6160-6169.
- H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-Relation-Type Cyclic Contractive Mappings and Applications to Integral Equations, Abstr. Appl. Anal., 2012 (2012), Article ID 386253, 15 pages.
- M. Pacurar, Ioan A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010) 1181-1187.
- M. A. Petric, Some results concerning cyclical contractive mappings, General Math., 18 (2010), 213-226.
- S. Radenovi ´c, Z. Kadelburg, D. Jandrli ´c and A. Jandrli ´c, Some results on weak contraction maps, Bull. Iranian Math. Soc. 38 (2012), 625-645.
- S. Radenovi ´c, Some remarks on mappings satisfying cyclical contractive conditions, Fixed Point Theory Appl. submitted.
- S. Radenovi ´c, A note on fixed point theory for cyclic φ-contractions, Demonstratio Matematica, submitted.
- S. Radenovic, Some results on cyclic generalized weakly C-contractions on partial metric spaces, in Bull. Allahabad Math. Soc. submitted.
- B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.