Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type
Main Article Content
Abstract
Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings with Lipschtiz constants L1and L2, respectively. Suppose that the Hammerstein type equation u + KFu = 0 has a solution in H. It is our purpose in this paper to construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein type equation. The results obtained in this paper improve and extend known results in the literature.
Article Details
References
- H. Brezis and F. Browder, Nonlinear integral equations and systems of Hammerstein type, Advances in Math., 18 (1975), 115-147.
- H. Brezis and F. Browder, Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 81 (1975), 73-78.
- F. E. Browder, D. G. de Figueiredo and P. Gupta, Maximal monotone operators and a nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 76 (1970), 700- 705.
- Felix E. Browder and Chaitan P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 75 (1969), 1347-1353.
- C.E. Chidume and N. Djitte, Approximation of solutions of nonlinear integral equations of Hammerstein type, ISRN Mathematical Analysis, 2012(2012), Article ID 169751, 12 pages.
- C.E. Chidume and H. Zegeye, Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space, Proc. Amer. Math. Soc. 133(2004), 851-858.
- C. L. Dolph, Nonlinear integral equations of the Hammerstein type,Trans. Amer. Math. Soc. 66 (1949), 289-307.
- A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, Acta Math. Soc. 54 (1930), 117-176.
- Kacurovskii, On monotone operators and convex functionals, Uspekhi Mat. Nauk, 15 (1960), 213-215.
- P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
- G. J. Minty, Monotone operators in Hilbert spaces. Duke Math. J., 29 (1962), 341-346.
- D. Pascali and Sburlan, Nonlinear mappings of monotone type, editura academiai, Bucuresti, Romania (1978).
- W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications,Yokohama Publishers, Yokohama, Japan (2000).
- M. M. Vainberg and R. I. Kacurovskii, On the variational theory of nonlinear operators and equations, Dokl. Akad. Nauk 129(1959), 1199-1202.
- H.K.Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(2002),109-113.
- E. H. Zarantonello, Solving functional equations by contractive averaging, Mathematics Research Center Rep, #160, Mathematics Research Centre,Univesity of Wisconsin, Madison, 1960.
- H. Zegeye and David M. Malonza, Habrid approximation of solutions of integral equations of the Hammerstein type, Arab.J.Math., 2(2013),221-232.
- H. Zegeye and N. Shahzad, Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings, Comput. Math. Appl. 62(2011), 4007-4014.
- H. Zegeye and N. Shahzad, Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces, Optim. Lett. 5(2011), 691-704.
- E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators, Springer-verlag, Berlin(1985).