Basic Theory for Differential Equations with Unified Reimann-Liouville and Hadamard Type Fractional Derivatives

Main Article Content

Basak Karpuz, Umut M. Ozkan, Tugba Yalcin, Mustafa K. Yildiz

Abstract

In this paper, we extend the definition of the fractional integral and derivative introduced in [Appl. Math. Comput. 218 (2011)] by Katugampola, which exhibits nice properties only for numbers whose real parts lie in [0,1]. We prove some interesting properties of the fractional integrals and derivatives. Based on these properties, the following concepts for the new type fractional differential equations are explored: Existence and uniqueness of solutions; Solutions of autonomous fractional differential equations; Dependence on the initial conditions; Green's function; Variation of parameters formula.

Article Details

References

  1. P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl. 269 (2002), no. 2, 387-400.
  2. P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), no. 1, 1-27.
  3. K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
  4. J. Hadamard, Essai sur l ´etude des fonctions donnees par leur developpement de Taylor, Journal de Mathematiques Pures et Appliquees 4 (1892), no. 8, 101-186.
  5. U.N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), no. 3, 860-865.
  6. U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 4 (2014), no. 6, 1-15.
  7. A.A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), no. 6, 1191-1204.
  8. A.A. Kilbas and J.J. Trujillo, Hadamard-type integrals as G-transforms, Integral Transforms Spec. Funct. 14 (2003), no. 5, 413-427.
  9. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations Elsevier Science B.V., Amsterdam, 2006.
  10. K.B. Oldham and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
  11. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  12. S. Pooseh, P. Almeida and D.F.M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative, Numer. Funct. Anal. Optim. 33 (2012), no. 3, 301-319.
  13. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.