Title: Best Proximity Points for a New Class of Generalized Proximal Mappings
Author(s): Tayyab Kamran, Muhammad Usman Ali, Mihai Postolache, Adrian Ghiura, Misbah Farheen
Pages: 198-205
Cite as:
Tayyab Kamran, Muhammad Usman Ali, Mihai Postolache, Adrian Ghiura, Misbah Farheen, Best Proximity Points for a New Class of Generalized Proximal Mappings, Int. J. Anal. Appl., 13 (2) (2017), 198-205.

Abstract


The best proximity points are usually used to find the optimal approximate solution of the operator equation Tx = x, when T has no fixed point. In this paper, we prove some best proximity point theorems for nonself multivalued operators, following the foot steps of Basha and Shahzad [Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012, 2012:42].

Full Text: PDF

 

References


  1. K. Fan, Extensions of two fixed point theorems of F. E. Browder. Math. Z., 112 (1969), 234-240.

  2. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006.

  3. M. Jleli, B. Samet, Best proximity point for α-ψ-proximal contraction type mappings and applications, Bull. Sci. Math., 137 (2013), 977-995.

  4. M. U. Ali, T. Kamran, N. Shahzad, Best proximity point for α-ψ-proximal contractive multimaps, Abstr. Appl. Anal., 2014 (2014), Art. ID 181598.

  5. A. Abkar, M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings, Nonlinear Anal., 74 (2011), 7261-7268.

  6. A. Abkar, M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl., 151 (2011), 418-424.

  7. M. Derafshpour, S. Rezapour, N. Shahzad, Best proximity points of cyclic ϕ-contractions in ordered metric spaces, Topol. Meth. Nonlin. Anal., 37 (2011), 193-202.

  8. C. Di Bari, T. Suzuki, C. Vetro, Best proximity point for cyclic Meir-Keeler contraction, Nonlinear Anal., 69 (2008), 3790-3794.

  9. S. Rezapour, M. Derafshpour, N. Shahzad, Best proximity points of cyclic φ-contractions on reflexive Banach spaces, Fixed Point Theory Appl., 2010 (2010), Art. ID 946178.

  10. C. Vetro, Best proximity points: convergence and existence theorems for p-cyclic mappings, Nonlinear Anal. 73 (7) (2010), 2283-2291.

  11. M. A. Alghamdi, M. A. Alghamdi, N. Shahzad, Best proximity point results in geodesic metric spaces, Fixed Point Theory Appl., 2012 (2012), Art. ID 234.

  12. M. A. Al-Thagafi, N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal., 70 (3) (2009), 1209-1216.

  13. J. Markin, N. Shahzad, Best proximity points for relatively u-continuous mappings in Banach and hyperconvex spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 680186.

  14. H. K. Nashine, P. Kumam, C. Vetro, Best proximity point theorems for rational proximal contractions, Fixed Point Theory Appl., 2013 (2013), Art. ID 95.

  15. A. Abkar, M. Gabeleh, The existence of best proximity points for multivalued non-self mappings, RACSAM, 107 (2) (2013), 319-325.

  16. B. S. Choudhury, N. Metiya, M. Postolache, P. Konar, A discussion on best proximity point and coupled best proximity point in partially ordered metric spaces. Fixed Point Theory Appl., 2015 (2015), Art. ID 170.

  17. W. Shatanawi, A. Pitea, Best proximity point and best proximity coupled point in a complete metric space with (P)-property, Filomat, 29 (1) (2015), 63-74.

  18. M. Jamali, S.M. Vaezpour, Best proximity point for certain nonlinear contractions in Menger probabilistic metric spaces, J. Adv. Math. Stud., 9 (2) (2016), 338-347.

  19. A. Bejenaru, A. Pitea, Fixed point and best proximity point theorems in partial metric spaces, J. Math. Anal., 7 (4) (2016), 25-44.

  20. S. S. Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012 (2012), Art. ID 42.

  21. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Art. ID 94.

  22. M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat 28 (4) (2014), 715-722.

  23. G. Minak, A. Helvac, I. Altun, Ciric type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28 (6) (2014), 1143-1151.

  24. M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (7) (2013), 1259-1268.

  25. D. Paesano, C. Vetro, Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation,Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat., 108 (2) (2014), 1005-1020.

  26. H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), Art. ID 210.

  27. O. Acar, I. Altun, A fixed point theorem for multivalued mappings with δ-distance, Abstr. Appl. Anal., 2014 (2014), Art. ID 497092.

  28. R. Batra, S. Vashistha, Fixed points of an F-contraction on metric spaces with a graph, Inter. J. Comput. Math., 91 (12) (2014), 2483-2490.