##### Title: Some Improvements of Conformable Fractional Integral Inequalities

##### Pages: 162-166

##### Cite as:

Fuat Usta, Mehmet Zeki Sarıkaya, Some Improvements of Conformable Fractional Integral Inequalities, Int. J. Anal. Appl., 14 (2) (2017), 162-166.#### Abstract

In this study, we wish to set up and present some new conformable fractional integral inequalities of the Gronwall type which have a great variety of implementation area in differential and integral equations.

##### Full Text: PDF

#### References

- T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66.
- D. R. Anderson and D. J. Ulness, Results for conformable differential equations, preprint, 2016.
- A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, Open Math. 2015; 13: 889–898.
- R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70.
- S. S. Dragomir, Some Gronwall Type Inequalities and Applications, RGMIA Monographs, Victoria University, Australia, 2002.
- S. S. Dragomir, On Volterra integral equations with kernels of (L)-type, Ann. Univ. Timisoara Facult de Math. Infor., 25 (1987), 21-41.
- O.S. Iyiola and E.R.Nwaeze, Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2 (2) (2016), 115-122.
- M. A. Hammad, R. Khalil, Conformable fractional heat differential equations, Int. J. Differ. Equ. Appl. 13 (3) (2014), 177-183.
- M. A. Hammad, R. Khalil, Abel’s formula and wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl. 13(3) (2014), 177-183.
- U. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535 [math.CA].
- A. Zheng, Y. Feng and W. Wang, The Hyers-Ulam stability of the conformable fractional differential equation, Math. Aeterna, 5 (3) (2015), 485-492.
- A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordonand Breach, Yverdon et Alibi, 1993.
- M. Z. Sarikaya, Gronwall type inequality for conformable fractional integrals, Konuralp J. Math. 4(2) (2016), 217-222.
- M. Z. Sarikaya and Huseyin Budak, New inequalities of Opial type for conformable fractional integrals, Turkish J. Math. in press.
- F. Usta, Explicit bounds on certain integral inequalities via conformable fractional calculus, Cogent Math. 4 (1) (2017), Art. ID 1277505.
- F. Usta and M.Z. Sarikaya , On generalization conformable fractional integral inequalities, RGMIA Res. Rep. Collection, 19 (2016), Article 123.
- F. Usta and M.Z. Sarikaya , A Retarded Conformable Fractional Integrals Inequalities and Its Application, in press.
- B. G. Pachpatte, On some new inequalities related to certain inequalities in the theory of differential equations, J. Math. Anal. Appl. 189 (1995), 128-144.
- T.H. Gronwall, Note on derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math. 20 (4) (1919), 292-296.