Title: Factors for Absolute Weighted Arithmetic Mean Summability of Infinite Series
Author(s): Hüseyin Bor
Pages: 175-179
Cite as:
Hüseyin Bor, Factors for Absolute Weighted Arithmetic Mean Summability of Infinite Series, Int. J. Anal. Appl., 14 (2) (2017), 175-179.

Abstract


In this paper, we proved a general theorem dealing with absolute weighted arithmetic mean summability factors of infinite series under weaker conditions. We have also obtained some known results.

Full Text: PDF

 

References


  1. H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985), 147-149.

  2. H. Bor, A note on |¯N,p n | k summability factors of infinite series, Indian J. Pure Appl. Math. 18 (1987), 330-336.

  3. H. Bor, Quasi-monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp.

  4. E. Cesàro, Sur la multiplication des s´ eries, Bull. Sci. Math. 14 (1890), 114-120.

  5. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.

  6. G. H. Hardy, Divergent Series, Clarendon Press, Oxford, (1949).

  7. K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. 14 (1983), 40-43.

  8. K. N. Mishra and R. S. L. Srivastava, On the absolute Cesàro summability factors of infinite series, Portugal. Math. 42 (1983/84), 53-61.

  9. K. N. Mishra and R. S. L. Srivastava, On |¯N,p n | summability factors of infinite series, Indian J. Pure Appl. Math. 15 (1984), 651-656.

  10. W. T. Sulaiman, A note on |A| k summability factors of infinite series, Appl. Math. Comput. 216 (2010), 2645-2648.

  11. G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tôhoku Math. J. (2), 1 (1949), 57-65.