Title: A Note on Absolute Cesaro $\varphi-|C, 1; \delta; l|_k$ Summability Factor
Author(s): Smita Sonker, Xh. Z. Krasniqi, Alka Munjal
Pages: 108-113
Cite as:
Smita Sonker, Xh. Z. Krasniqi, Alka Munjal, A Note on Absolute Cesaro $\varphi-|C, 1; \delta; l|_k$ Summability Factor, Int. J. Anal. Appl., 15 (1) (2017), 108-113.

Abstract


A positive non-decreasing sequence has been used to establish a theorem on a minimal set of sufficient conditions for an infinite series to be absolute Cesaro $\varphi-|C, 1; \delta; l|_k$ summable. For some well-known applications, suitable conditions have been applied on the presented theorem for obtaining the sub-result of the presented theorem.

Full Text: PDF

 

References


  1. H. Bor, Absolute summability factors, Atti Sem. Mat. Fis. Univ. Modena., 39 (1991), 419-422.

  2. H. Bor, On absolute summability factors, Proc. Amer. Math. Soc., 118(1) (1993), 71-75.

  3. H. Bor, On the absolute Riesz summability factors, Rocky Mountain J. Math., 24(4) (1994), 1263-1271.

  4. H. S. Ozarslan, A note on absolute summability factors, Proc. Indian Acad. Sci., 113 (2003), 165-169.

  5. H. S. Ozarslan, On absolute Cesáro summability factors of infinite series, Com. Math. Anal., 3(1) (2007), 53-56.

  6. H. S. Ozarslan and T. Ari, Absolute matrix summability methods, Applied Math. Lett., 24 (2011), 2102-2106.

  7. S. K. Saxena, On Nörlund summability factors of infinite series, Int. J. Math. Analysis, 22(2) (2008), 1097 - 1102.

  8. S. M. Mazhar, On (C,1) summability factors of infinite series, Indian J. Math., 14 (1972), 45-48.

  9. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Sci., 7 (1957), 113-141.

  10. M. Balci, Absolute ϕ-summability factors, Comm. Fac. Sci. Univ. Ankara, Ser. A 1, 29 (1980), 63-80.