Title: Type-2 Fuzzy G-Tolerance Relation and Its Properties
Author(s): Mausumi Sen, Dhiman Dutta, Ashok Deshpande
Pages: 172-178
Cite as:
Mausumi Sen, Dhiman Dutta, Ashok Deshpande, Type-2 Fuzzy G-Tolerance Relation and Its Properties, Int. J. Anal. Appl., 15 (2) (2017), 172-178.


In this short communication we generalize the definition of type-2 fuzzy tolerance relation and consequently the type-2 fuzzy G-tolerance relation in type-2 fuzzy sets. The type-2 fuzzy G-tolerance relation helps in finding the type-2 fuzzy G-equivalence relation. Moreover, we have studied the notion of type-2 fuzzy tolerance relation in abstract algebra.

Full Text: PDF



  1. R. Aliev, W. Pedrycz, B. Guirimov, et al., Type-2 fuzzy nueral networks with fuzzy clustering and differential evolution optimization, Inf. Sci. 181 (2011), 1591-1608.

  2. S. Chakravarty and P.K. Dash, A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices, Appl. Soft Comput. 12 (2012), 931-941.

  3. B. Choi and F. Rhee, Interval type-2 fuzzy membership function generation methods for pattern recognition, Inf. Sci. 179 (2009), 2102-2122.

  4. T. Dereli, A. Baykasoglu, K. Altun, et al., Industrial applications of type-2 fuzzy sets and systems: a concise review, Comput. Indust. 62 (2011), 125-137.

  5. Dhiman Dutta and Mausumi Sen, Type-2 fuzzy equivalence relation on a groupoid under balanced and semibalanced maps, J. Inf. Math. Sci. (2017), in press .

  6. D. Dubois and H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci. 9 (6) (1978), 613-626.

  7. D. Dubois and H. Prade, Operations in a fuzzy-valued Logic, Inf. Control 43 (1979), 224-240.

  8. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, first ed., Acdemic Press Inc., New York, 1980.

  9. S.S. Gilan, M.H. Sebt and V. Shahhosseini, Computing with words for hierarchical competency based selection of personal in construction companies, Appl. Soft Comput. 12 (2012), 860-871.

  10. B. Q. Hu and C. Y. Wang, On type-2 fuzzy relations and interval-valued type-2 fuzzy sets, Fuzzy Sets Syst. 236 (2014), 1-32.

  11. N.N. Karnik and J.M. Mendel, Applications of type-2 fuzzy logic systems to forecasting of time-series, Inf. Sci. 120 (1999), 89-111.

  12. N. N. Karnik and J. M. Mendel, Operations on type-2 fuzzy sets, Fuzzy Sets Syste. 79 (2001), 327-348.

  13. P. Kundu, S. Kar and M. Maiti, Multi-item solid transportation problem with type-2 fuzzy parameters, Appl. Soft Comput. 31 (2015), 61-80.

  14. J.M. Mendel, Computing with words and its relationship with fuzzistics, Inf. Sci. 177 (2007), 988-1006.

  15. M.Mizumoto and K.Tanaka, Some Properties of fuzzy sets of type-2, Inf. Control 31 (1976), 312-340.

  16. M.Mizumoto and K.Tanaka, Fuzzy sets of type-2 under algebraic product and algebraic sum, Fuzzy Sets Syst. 31 (1981), 277-290.

  17. I. Ozkan and I.B. Turksen, MiniMax e-star cluster validity index for type-2 fuzziness, Inform. Sci. 184 (2012), 64-74.

  18. C. Leal-Ramirez, O. Castillo, P. Melin, et al. , Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure, Inf. Sci. 181 (2011), 519-535.

  19. S.W. Tung, C. Quek, C. Guan, eT2FIS: an evolving type-2 neural fuzzy inference system, Inf. Sci. 220 (2013), 124-148.

  20. D. Wu, W. Tan, A simplified type-2 fuzzy logic controller for real-time control, ISA Trans. 45 (4) (2006), 503-516.

  21. L.A. Zadeh, The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I, Inf. Sci. 8 (1975), 199-249.