On the Limited p-Schur Property of Some Operator Spaces
Main Article Content
Abstract
We introduce and study the notion of limited $p$-Schur property ($1\leq p\leq\infty$) of Banach spaces. Also, we establish some necessary and sufficient conditions under which some operator spaces have the limited $p$-Schur property. In particular, we prove that if $X$ and $Y$ are two Banach spaces such that $X$ contains no copy of $\ell_1$ and $Y$ has the limited $p$-Schur property, then $K(X,Y)$ (the space of all compact operators from $X$ into $Y$) has the limited $p$-Schur property.
Article Details
References
- F. Albiac and N.J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006.
- J. Bourgain and J. Diestel, Limited operators and strict consingularity, Math. Nachr. 119 (1984) 55-58.
- J. Castillo and F. Sanchez, Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43-59.
- D. Chen, J. Alejandro Chvez-Domnguez, and Li. Lei. Unconditionally p-converging operators and Dunford-Pettis Property of order p, arXiv preprint arXiv:1607.02161 (2016).
- A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993.
- Mohammad B. Dehghani and S. Mohammad Moshtaghioun, On the p-Schur property of Banach spaces, Ann. Funct. Anal. (2017), 14 pages.
- M.B. Dehghani and S.M. Moshtaghioun, Limited p-converging operators and its relation with some geometric properties of Banach spaces, (2017), Submitted.
- J. Diestel, H. Jachowr and A. Tonge, Absolutely summing operators, Cambrigde University Press, 1995.
- G. Emmanuele, On relative compactness in K(X,Y ), J. Math. Anal. Appl. 379 (2013) 88-90.
- J. H. Fouire and E. D. Zeekoei, DP * properties of order p on Banach spaces, Quaest. Math. 37 (2014), no. 3, 349-358.
- I. Ghencia and P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property and L-set, Colloq. Math. 1.6 (2006), 311-324.
- H. Jarchow, Locally convex spaces, B.G. Teubner, 1981.
- F. Mayoral, Compact sets of compact operators in absence of ”˜ 1 , Proc. Amer. Math. Soc. 129 (2001), 7982.
- S.M. Moshtaghioun and J. Zafarani, Weak sequentional convergence in the dual of operator ideas, J. Oper. Theory 49 (2003), 143-151.
- A. Pelczynski, Banach Spaces in which every unconditionally converging operator is weakly compact, Bull. L'Acad. Polon. Sci. 10 no. 2, (1962), 641-648.
- R. Ryan,The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. 35 no. 11-12, (1987), 785-792.
- T. Schlumprecht, Limited sets in Banach spaces, Ph. D. Dissertation, München, (1987).
- B. Tanbay, Direct sums and the Schur property, Turk. J. Math. 22 (1999), 349-354.