On the Limited p-Schur Property of Some Operator Spaces

Main Article Content

M.B. Dehghani, S.M. Moshtaghioun, M. Dehghani

Abstract

We introduce and study the notion of limited $p$-Schur property ($1\leq p\leq\infty$) of Banach spaces. Also, we establish some necessary and sufficient conditions under which some operator spaces have the limited $p$-Schur property. In particular, we prove that if $X$ and $Y$ are two Banach spaces such that $X$ contains no copy of $\ell_1$ and $Y$ has the limited $p$-Schur property, then $K(X,Y)$ (the space of all compact operators from $X$ into $Y$) has the limited $p$-Schur property.

Article Details

References

  1. F. Albiac and N.J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006.
  2. J. Bourgain and J. Diestel, Limited operators and strict consingularity, Math. Nachr. 119 (1984) 55-58.
  3. J. Castillo and F. Sanchez, Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43-59.
  4. D. Chen, J. Alejandro Chvez-Domnguez, and Li. Lei. Unconditionally p-converging operators and Dunford-Pettis Property of order p, arXiv preprint arXiv:1607.02161 (2016).
  5. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993.
  6. Mohammad B. Dehghani and S. Mohammad Moshtaghioun, On the p-Schur property of Banach spaces, Ann. Funct. Anal. (2017), 14 pages.
  7. M.B. Dehghani and S.M. Moshtaghioun, Limited p-converging operators and its relation with some geometric properties of Banach spaces, (2017), Submitted.
  8. J. Diestel, H. Jachowr and A. Tonge, Absolutely summing operators, Cambrigde University Press, 1995.
  9. G. Emmanuele, On relative compactness in K(X,Y ), J. Math. Anal. Appl. 379 (2013) 88-90.
  10. J. H. Fouire and E. D. Zeekoei, DP * properties of order p on Banach spaces, Quaest. Math. 37 (2014), no. 3, 349-358.
  11. I. Ghencia and P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property and L-set, Colloq. Math. 1.6 (2006), 311-324.
  12. H. Jarchow, Locally convex spaces, B.G. Teubner, 1981.
  13. F. Mayoral, Compact sets of compact operators in absence of ”˜ 1 , Proc. Amer. Math. Soc. 129 (2001), 7982.
  14. S.M. Moshtaghioun and J. Zafarani, Weak sequentional convergence in the dual of operator ideas, J. Oper. Theory 49 (2003), 143-151.
  15. A. Pelczynski, Banach Spaces in which every unconditionally converging operator is weakly compact, Bull. L'Acad. Polon. Sci. 10 no. 2, (1962), 641-648.
  16. R. Ryan,The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. 35 no. 11-12, (1987), 785-792.
  17. T. Schlumprecht, Limited sets in Banach spaces, Ph. D. Dissertation, München, (1987).
  18. B. Tanbay, Direct sums and the Schur property, Turk. J. Math. 22 (1999), 349-354.