Some Results on Controlled K-Frames in Hilbert Spaces

Main Article Content

M. Nouri, A. Rahimi, SH. Najafzadeh

Abstract

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Also K-frames have been introduced to study atomic systems with respect to bounded linear operator. In this paper, the notion of controlled K-frames will be studied and it will be shown that controlled K-frames are equivalent to K-frames under some mild conditions. Finally, the stability of controlled K-Bessel sequences under perturbation will be discussed with some examples.

Article Details

References

  1. P. Balazs, J. P. Antoine, A. Grybos, Wighted and Controlled Frames, Int. J. Wavelets Multiresolut. Inf. Process. 8(1) (2010) 109-132.
  2. I. Bogdanova, P. Vandergheynst, J .P . Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal. (19) (2005) 223-252.
  3. H. Bolcskei, F. Hlawatsch , H. G. Feichtinger,Frame theoretic analysis of over- sampled filter banks, IEEE Trans. Signal Process. 46 (1998) 3256-3268.
  4. P. Casazza, O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997) 543-557.
  5. P. G. Casazza, G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, College Park, MD, Contemp. Math., vol.345. American Mathematical Society, Providence,(2004) 87-113.
  6. P.G. Casazza, G. Li .S. Kutyniok, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal.25 (2008) 114-132.
  7. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston 2003.
  8. N. E. Duday Ward, J. R. Partington, A construction of rational wavelets and frames in Hardy-Sobolev space with appli- cations to system modelling. SIAM.J.Control Optim.36 (1998) 654-679.
  9. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math. Soc.72 (1952) 341-366.
  10. I. Daubechies, A. Grossmann, Y. Meyer, Painless non orthogonal expansions, J. Math. Phys. 27(1986) 1271-1283.
  11. Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9(1) (2003) 77-96.
  12. Y. C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Walvelets Multi. Inf. Process. 3(3) (2005) 347-359.
  13. P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Byrnes, J.s. (ed.) signals processing for multimedia, PP. 35-54.IOS press, Amsterdam (1999).
  14. D. Hua and Y. Huang, Controlled K-g-frames in Hilbert spaces, Results. Math. (2016) DOI 10.1007/s00025-016-0613-0.
  15. A. Khosravi and K. Musazadeh, Controlled fusion frames, Methods Funct. Anal. Topol. 18(3) (2012), 256-265.
  16. K. Musazadeh and H. Khandani, Some results on controlled frames in Hilbert spaces, Acta Math. Sci. 36B(3) (2016), 655-665.
  17. A. Rahimi, A. Fereydooni, Controlled G-Frames and Their G-Multipliers in Hilbert spaces , An. tiin. Univ. Ovidius Constana, 2(12) (2013), 223-236.
  18. M. Rashidi-Kouchi and A. Rahimi, On controlled frames in Hilbert C * -modules, Int. J. Wavelets Multiresolut. Inf. Process. 15(4) (2017), Art. ID 1750038.
  19. T. Strohmer, R. Jr. Heath, Grass manian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257- 275.
  20. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. 322 (2006) 437-452.
  21. X. Xiao, Y. Zhu, L. Gˇ avruta, Some Properties of K-Frames in Hilbert Spaces , Results. Math. 63 (2013), 1243-1255.