Some Results on Controlled K-Frames in Hilbert Spaces
Main Article Content
Abstract
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Also K-frames have been introduced to study atomic systems with respect to bounded linear operator. In this paper, the notion of controlled K-frames will be studied and it will be shown that controlled K-frames are equivalent to K-frames under some mild conditions. Finally, the stability of controlled K-Bessel sequences under perturbation will be discussed with some examples.
Article Details
References
- P. Balazs, J. P. Antoine, A. Grybos, Wighted and Controlled Frames, Int. J. Wavelets Multiresolut. Inf. Process. 8(1) (2010) 109-132.
- I. Bogdanova, P. Vandergheynst, J .P . Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal. (19) (2005) 223-252.
- H. Bolcskei, F. Hlawatsch , H. G. Feichtinger,Frame theoretic analysis of over- sampled filter banks, IEEE Trans. Signal Process. 46 (1998) 3256-3268.
- P. Casazza, O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997) 543-557.
- P. G. Casazza, G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, College Park, MD, Contemp. Math., vol.345. American Mathematical Society, Providence,(2004) 87-113.
- P.G. Casazza, G. Li .S. Kutyniok, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal.25 (2008) 114-132.
- O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston 2003.
- N. E. Duday Ward, J. R. Partington, A construction of rational wavelets and frames in Hardy-Sobolev space with appli- cations to system modelling. SIAM.J.Control Optim.36 (1998) 654-679.
- R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math. Soc.72 (1952) 341-366.
- I. Daubechies, A. Grossmann, Y. Meyer, Painless non orthogonal expansions, J. Math. Phys. 27(1986) 1271-1283.
- Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9(1) (2003) 77-96.
- Y. C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Walvelets Multi. Inf. Process. 3(3) (2005) 347-359.
- P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Byrnes, J.s. (ed.) signals processing for multimedia, PP. 35-54.IOS press, Amsterdam (1999).
- D. Hua and Y. Huang, Controlled K-g-frames in Hilbert spaces, Results. Math. (2016) DOI 10.1007/s00025-016-0613-0.
- A. Khosravi and K. Musazadeh, Controlled fusion frames, Methods Funct. Anal. Topol. 18(3) (2012), 256-265.
- K. Musazadeh and H. Khandani, Some results on controlled frames in Hilbert spaces, Acta Math. Sci. 36B(3) (2016), 655-665.
- A. Rahimi, A. Fereydooni, Controlled G-Frames and Their G-Multipliers in Hilbert spaces , An. tiin. Univ. Ovidius Constana, 2(12) (2013), 223-236.
- M. Rashidi-Kouchi and A. Rahimi, On controlled frames in Hilbert C * -modules, Int. J. Wavelets Multiresolut. Inf. Process. 15(4) (2017), Art. ID 1750038.
- T. Strohmer, R. Jr. Heath, Grass manian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257- 275.
- W. Sun, G-frames and g-Riesz bases, J. Math. Anal. 322 (2006) 437-452.
- X. Xiao, Y. Zhu, L. Gˇ avruta, Some Properties of K-Frames in Hilbert Spaces , Results. Math. 63 (2013), 1243-1255.