New Modified Method of the Chebyshev Collocation Method for Solving Fractional Diffusion Equation

Main Article Content

H. Jaleb, H. Adibi

Abstract

In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations. The fractional derivative is considered in the Caputo sense. The finite difference scheme and Chebyshev collocation method are used. The numerical results obtained by this approach have been compared with other methods. The results show the reliability and efficiency of the proposed method.

Article Details

References

  1. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech, 51 (19840), 294-298.
  2. K. B. Oldham and J. Spanier, The Fractional Cvalculus, Academic Press, New York and London, ( 1974).
  3. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, (1993).
  4. S. G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, USA, (1993).
  5. S. Das, Fractional Calculus for System Identification and Controls, Springer, New york, (2008).
  6. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional integro-differential equations, ANZIAM J. 51 (2010), 464-475.
  7. M. Inc, The approximate and exact solutions of the space-and time-fractional Burger,s equations with initial conditions by varational iteration method, J. Math. Anal. Appl. 345 (2008), 476-484.
  8. N. H. Sweilam, M.M.Khader and R.F. AL-Bar, Numerical studies for a multi-order fractional differential equation, Phys. Lett. A, 371 (2007), 26-33.
  9. H. Jafari and V. Daftardar-Gejji, Solving linear and nonlinear fractional diffusion and wave equations by ADM, Appl. Math. Comput, 180 (2006), 488-497.
  10. I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 674-684.
  11. E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput, 176 (2006), 1-6.
  12. G. J. Fix, J.P. Roop,Least squares finite element solution of the fractional order two-point boundary value problem, Comput. Math. Appl. 48 (2004), 1017-1033.
  13. R. Darzi, B.Mohammadzade, S.Musavi, R.Behshti, Sumudu transform method for solving fractional differential equations and fractional diffusion-Wave equation, J. Math. Comput. Sci. 6 (2013) 79-84.
  14. A. Neamaty, B. Agheli, R. Darzi, Solving fractional partial differential equation by using wavelet operational method, J. Math. Comput. Sci. 7 (2013), 230-240 .
  15. F. Liu, V .Anh and I. Turner,Numerical solution of the space fractional Fokker-Plank equation, J. Comput. Appl. Math. 166 (2004), 209-219.
  16. F. Liu, V. Anh, I. Turner, P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Comput. 13 (2003), 233-245.
  17. M. M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2535-2542.
  18. A. Saadatmandi, M. Dehghan, A. Tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl. 62 (2011), 1135-1142.
  19. M. M. Khader, N. H. Swetlam and A. M. S. Mahdy, The Chebyshev collection method for solving fractional order KleinGordon equation, Wseas Trans. Math. 13 (2014), 2224-2880 .
  20. I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).
  21. M. Joseph Kimeu, Fractional Calculus: Definitions and Applications, Western Kentucky University, (2009).
  22. C. Canuto, A. Quarteroni, M. Y. Hussaini, and T. A. Zang, Spectral Methods Fundamentals in Single Domains, SpringerVerlag Berlin Heidelberg, Printed in Germany (2006).
  23. M. A.Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc. Englewood Cliffs, N. J. (1966).
  24. M. M. Meerschaert and C. Tadjeran,Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2008), 65-77.
  25. M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), 80-90.
  26. M. M. Khader, N. H. Sweilam and A. M. S. Mahdy, An Efficient Numerical Method for Solving the Fractional Diffusion Equation, J. Appl. Math. Bioinform. 1 (2011), 1-12.