Wijsman Rough Lacunary Statistical Convergence on I Cesaro Triple Sequences

Main Article Content

N. Subramanian, A. Esi

Abstract

In this paper, we defined concept of Wijsman I-Cesàro summability for sequences of sets and investigate the relationships between the concepts of Wijsman strongly I-Cesàro summability and Wijsman statistical I- Cesàro summability by using the concept of a triple sequence spaces.

Article Details

References

  1. S. Aytar, Rough statistical Convergence, Numer. Funct. Anal. Optim. 29(3) (2008), 291-303.
  2. A. Esi , On some triple almost lacunary sequence spaces defined by Orlicz functions, Res. Rev., Discr. Math. Struct. 1(2) (2014), 16-25.
  3. A. Esi and M. Necdet Catalbas,Almost convergence of triple sequences, Glob. J. Math. Anal. 2(1) (2014), 6-10.
  4. A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9 (5)(2015), 2529-2534.
  5. A. J. Dutta,A. Esi and B.C. Tripathy,Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal. 4(2)(2013), 16-22.
  6. S. Debnath, B. Sarma and B.C. Das ,Some generalized triple sequence spaces of real numbers , J. Nonlinear Anal. Optim. 6(1) (2015), 71-79.
  7. S.K. Pal, D. Chandra and S. Dutta, Rough ideal Convergence, Hacee. J. Math. Stat. 42(6)(2013), 633-640.
  8. H.X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22(2001), 201-224.
  9. A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8 (2)(2007), 49-55.
  10. A. Sahiner and B.C. Tripathy , Some I related properties of triple sequences, Selcuk J. Appl. Math. 9 (2)(2008), 9-18.
  11. N. Subramanian and A. Esi, The generalized tripled difference of χ 3 sequence spaces, Glob. J. Math. Anal. 3 (2)(2015), 54-60.
  12. M. Aiyub, A. Esi and N. Subramanian, The triple entire difference ideal of fuzzy real numbers over fuzzy p- metric spaces defined by Musielak Orlicz function, J. Intell. Fuzzy Syst. 33(2017), 1505-1512.