Harmonic m-Preinvex Functions and Inequalities
Main Article Content
Abstract
In this paper, we introduce a new class of harmonic functions, which is called harmonic mpreinvex functions for a fixed m. Some Hermite-Hadamard inequality for harmonic m-preinvex functions are derived. Several special cases are discussed as applications of the main results. The ideas and techniques of this paper may be starting point for further research.
Article Details
References
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2007), 1294-1308.
- M. U. Awan, M. A. Noor, V. N. Mishra and K. I. Noor, Some characterizations of general preinvex functions, Int. J. Anal. Appl. 15(1), 46-56.
- M. U. Awan, M. A. Noor and K. I. Noor, Some integral inequalities using quantum calculus approach, Int. J. Anal. Appl. 15(2)(2017), 125-137.
- M. K. Bakula, M. E. Ozdemir and J. Pecaric, Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Ineq. Pure Appl. Math., 9(4)(2008), Art. 96, 12 pages.
- A. Ben-Isreal and B. Mond, What is invexity? J. Australian Math. Soc., Ser. B, 28(1)(1986), 1-9.
- G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, Holland, (2002).
- S.S. Dragomir and G. Toader, Some inequalities for m-convex functions, Studia Univ Babes-Bolyai Math., 38(1993), 21-28.
- S.S. Dragomir, On some inequalities of Hermite-Hadamard type for m-convex functions,Tamkang J. Math., 33(1)(2002).
- J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl., 58(1893), 171-215.
- C. Y. He, Y. Wang, B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions, J. Nonlinear Sci. Appl., 10(2017), 205C214.
- M. A. Hanson. On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545-550.
- C. Hermite, Sur deux limites d'une integrale difinie. Mathesis, 3(1883), 82.
- I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions. Hacet, J. Math. Stats., 43(6)(2014), 935-942.
- I. A. Baloch and I. Iscan, Some Hermite-Hadamard type inequalities for harmonically (s, m)-convex functions in second sense, arXiv:1604.08445
- [math.CA], (2016).
- S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189(1995), 901-908.
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, (2006).
- M. A. Noor, Variational-like inequalities, Optimization, 30(1994), 323-330.
- M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2(207), 126-131.
- M.A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonlinear Anal. Forum, 14(2009), 167-173.
- M.A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(3)(2007), 1-14.
- M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316(2006), 697-706.
- M. A. Noor, K. I. Noor and S. Iftikhar, Harmonic MT-preinvex functions and integral inequalities, RAD HAZU Math. Znan. 20(2016), 51-70.
- Some new bounds of the quadrature formula of Gauss-Jacobi type via(p, q)-prinvex functions, Appl. Math. Inofrm. Sci. Letters, 5(2)(2017), 51-56.
- M. A. Noor, Th. M. Rassias, K. I. Noor and S. Iftikhar, Inequalities for coordinated harmonic preinvex functions, Proceed. Jangjeon Math. Soc. 20(4)(2017), 647-658.
- M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull. Series A, 77(1)(2015), 5-16.
- M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic preinvex functions, Saussurea, 6(1)(2016), 34-53.
- M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex functions, TWMS J. Pure Math., 7(1)(2016), 3-19.
- M. A. Noor, K. I. Noor and S. Iftikhar,On harmonic (h, r)-convex functions, Proc. Jangjeon Math. Soc., 19(2016).
- M. A. Noor, K. I. Noor and S. Iftikhar, Fractional Ostrowski inequalities for harmonic h-preinvex functions, FACTA(NIS), Ser. Math. Inform. 31(2)(2016), 417-445
- M. A. Noor, K. I. Noor and S. Iftikhar, Relative harmonic m-convex functions and integral inequalities, J. Adv. Math. Stud. 10(2)(2017), 231-242.
- J. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Acdemic Press, New york, (1992).
- R. Pini, Invexity and generalized convexity, Optimization, 22(1991), 513-525.
- H. N. Shi and Zhang, Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions, J. Inequal. Appl., 2013(2013), Art. ID 527.
- G. H. Toader, Some generalizations of convexity, Proc. Colloq. Approx. Optim, Cluj Napoca (Romania), (1984), 329-338.
- T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136(1998), 29-38.
- S. Varosanec: On h-convexity, J. Math. Anal. Appl., 326(2007), 303-311.