Title: Donoho-Stark Uncertainty Principle Associated with a Singular Second-Order Differential Operator
Author(s): Fethi Soltani
Pages: 1-10
Cite as:
Fethi Soltani, Donoho-Stark Uncertainty Principle Associated with a Singular Second-Order Differential Operator, Int. J. Anal. Appl., 4 (1) (2014), 1-10.

Abstract


For a class of singular second-order differential operators ∆, we prove a continuous-time principles for L1theory and L2theory, respectively. Another version of continuous-time principle using L1∩L2 theory is given.

Full Text: PDF

 

References


  1. L. Bouattour and K. Trimeche, Beurling-H¨ormander’s theorem for the Chebli-Trimeche transform,Glob. J. Pure Appl. Math. 1(3) (2005) 342–357

  2. H. Ch´ebli, Th´eor`eme de Paley-Wiener associ??un op ´erateur diff´erentiel singulier sur (0, ∞), J. Math. Pures Appl. 58(1) (1979) 1–19.

  3. R. Daher, An analog of Titchmarsh’s theorem of Jacobi transform, Int. J. Math. Anal. 6(20)(2012) 975 –981.

  4. R. Daher and T. Kawazoe, Generalized of Hardy’s theorem for Jacobi transform, HiroshimaJ. Math. 36(3) (2006) 331–337.

  5. R. Daher and T. Kawazoe, An uncertainty principle on Sturm-Liouville hypergroups, Proc.Japan Acad. 83 Ser. A (2007) 167–169.

  6. R. Daher, T. Kawazoe and H. Mejjaoli, A generalization of Miyachi’s theorem, J. Math. Soc.Japan 61(2) (2009) 551–558.

  7. D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math.49(3) (1989) 906–931.

  8. C.L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983) 129–206.

  9. D. Gabor, Theory of communication, J. Inst. Elec. Engrg. 93 (1946) 429–457.

  10. W. Heisenberg, The Physical Principles of the Quantum Theory, Dover, NewYork, 1949 (TheUniversity of Chicago Press, 1930).

  11. R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl. 332 (2007) 155–163.

  12. R. Ma, Heisenberg uncertainty principle on Ch´ebli-Trim`eche hypergroups, Pacific J. Math.235(2) (2008) 289–296.

  13. M.M. Nessibi, L.T. Rachdi and K. Trim`eche, The local central limit theorem on the productof the Ch´ebli-Trim`eche hypergroup and the Euclidean hypergroup Rn, J. Math. Sci. (Calcutta)9(2) (1998) 109–123.

  14. M. Rosler and M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math.Soc. 127(1) (1999) 183–194.

  15. K. Trimeche, Transformation int´egrale de Weyl et theoreme de Paley-Wiener associes unoperateur diff´erentiel singulier sur (0, ∞), J. Math. Pures Appl. 60(1) (1981) 51–98.

  16. K. Trimeche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4(1) (1997) 97–112.

  17. Z. Xu, Harmonic analysis on Ch´ebli-Trim`eche hypergroups, Ph.D. thesis, Murdoch University, Perth, Western Australia, 1994.

  18. H. Zeuner, The central limit theorem for Ch´ebli-Trim`eche hypergroups, J. Theoret. Probab. 2(1) (1989) 51–63.